2022年二次函数与几何综合压轴题题型归纳精编版 .pdf

上传人:C****o 文档编号:12606057 上传时间:2022-04-25 格式:PDF 页数:11 大小:566.43KB
返回 下载 相关 举报
2022年二次函数与几何综合压轴题题型归纳精编版 .pdf_第1页
第1页 / 共11页
2022年二次函数与几何综合压轴题题型归纳精编版 .pdf_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《2022年二次函数与几何综合压轴题题型归纳精编版 .pdf》由会员分享,可在线阅读,更多相关《2022年二次函数与几何综合压轴题题型归纳精编版 .pdf(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、最新资料推荐1 一 基础构图:y=322xx(以下几种分类的函数解析式就是这个)和最小,差最大在对称轴上找一点P,使得 PB+PC 的和最小,求出 P 点坐标在对称轴上找一点P,使得 PB-PC 的差最大,求出 P 点坐标求面积最大连接 AC,在第四象限找一点P,使得ACP面积最大,求出P 坐标讨论直角三角连接 AC,在对称轴上找一点P,使得ACP为直角三角形,求出 P 坐标或者在抛物线上求点P,使 ACP 是以 AC 为直角边的直角三角形讨论等腰三角连接 AC,在对称轴上找一点P,使得ACP为等腰三角形,求出 P 坐标讨论平行四边形1、点 E 在抛物线的对称轴上,点F 在抛物线上,且以 B,

2、A,F,E 四点为顶点的四边形为平行四边形,求点F 的坐标二 综合题型O x y A B C D O x y A B C D O x y A B C D O x y A B C D 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 11 页 - - - - - - - - - - 最新资料推荐2 例 1 (中考变式)如图,抛物线cbxxy2与 x 轴交与 A(1,0),B(-3,0) 两点,顶点为D。交 Y轴于 C (1) 求该抛物线的解析式与ABC 的面积。(2)在抛物线第二象限图象上是否存在

3、一点M , 使 MBC 是以 BCM 为直角的直角三角形,若存在,求出点 P 的坐标。若没有,请说明理由(3)若 E 为抛物线B、C 两点间图象上的一个动点(不与 A、B 重合 ),过 E 作 EF与X轴垂直,交 BC于 F,设 E 点横坐标为x.EF 的长度为L,求 L 关于 X 的函数关系式?关写出X 的取值范围?当 E 点运动到什么位置时,线段EF 的值最大,并求此时E 点的坐标?(4)在(5)的情况下直线BC 与抛物线的对称轴交于点H。当 E 点运动到什么位置时,以点 E、F、H、D 为顶点的四边形为平行四边形?(5)在( 5)的情况下点E 运动到什么位置时,使三角形BCE 的面积最大

4、?精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 11 页 - - - - - - - - - - 最新资料推荐3 例 2 考点:关于面积最值如图,在平面直角坐标系中,点A、C 的坐标分别为 ( 1, 0) 、( 0,3) ,点 B 在 x 轴上已知某二次函数的图象经过A、B、C 三点,且它的对称轴为直线x1,点 P 为直线 BC 下方的二次函数图象上的一个动点(点P 与 B、C 不重合),过点 P 作 y 轴的平行线交BC 于点 F(1)求该二次函数的解析式;(2)若设点 P 的横坐标为m,

5、试用含m 的代数式表示线段PF 的长;(3)求 PBC 面积的最大值,并求此时点P 的坐标例 3 考点:讨论等腰如图,已知抛物线y21x2bxc 与 y 轴相交于 C,与 x 轴相交于A、B,点 A 的坐标为( 2,0) ,点 C 的坐标为( 0,1) (1)求抛物线的解析式;(2)点 E 是线段 AC 上一动点,过点E 作 DE x 轴于点 D,连结 DC,当 DCE 的面积最大时,求点 D 的坐标;(3)在直线 BC 上是否存在一点P,使 ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由例 4考点:讨论直角三角 如图,已知点 A(一 1,0)和点 B(1,2),在坐标轴上D

6、 B C O A y x E B C O A 备用图y x y x B A F P x1 C O 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 11 页 - - - - - - - - - - 最新资料推荐4 确定点 P,使得 ABP为直角三角形,则满足这样条件的点P共有()(A)2个(B)4个 (C)6个( D)7个 已知:如图一次函数y21x1 的图象与x 轴交于点 A,与 y 轴交于点B;二次函数y21x2bxc 的图象与一次函数y21x1 的图象交于B、 C 两点,与 x 轴交于 D

7、、 E 两点且 D 点坐标为 ( 1,0)(1)求二次函数的解析式;(2)求四边形BDEC 的面积 S;(3)在 x 轴上是否存在点P,使得 PBC 是以 P 为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由例 5 考点:讨论四边形已知:如图所示,关于x 的抛物线 yax2xc(a0)与 x 轴交于点A(2,0) ,点 B(6,0) ,与 y 轴交于点 C(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D,使四边形ABDC 为等腰梯形,写出点D 的坐标,并求出直线AD 的解析式;(3) 在(2) 中的直线 AD 交抛物线的对称轴于点M, 抛物线上有一动点P

8、,x 轴上有一动点Q是否存在以 A、M、P、Q 为顶点的平行四边形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由综合练习:1、平面直角坐标系xOy 中,抛物线244yaxaxac与 x 轴交于点A、点 B,与 y 轴的正半轴O A B y C x D E 2 B A y O C x 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 11 页 - - - - - - - - - - 最新资料推荐5 交于点 C,点 A 的坐标为 (1, 0),OBOC,抛物线的顶点为D。 (1) 求此抛

9、物线的解析式; (2) 若此抛物线的对称轴上的点P 满足 APBACB,求点P的坐标; (3)Q 为线段 BD 上一点,点 A 关于 AQB 的平分线的对称点为A,若2QBQA,求点 Q 的坐标和此时QAA的面积。2、在平面直角坐标系xOy中,已知二次函数2+2yaxaxc的图像与y轴交于点30,C,与x轴交于 A、B 两点,点 B 的坐标为03,。(1) 求二次函数的解析式及顶点D 的坐标;(2) 点 M 是第二象限内抛物线上的一动点,若直线OM 把四边形 ACDB 分成面积为1 : 2 的两部分,求出此时点M的坐标;(3) 点 P 是第二象限内抛物线上的一动点,问:点P 在何处时 CPB的

10、面积最大?最大面积是多少?并求出此时点P 的坐标。3、如图,在平面直角坐标系xOy中,抛物线xxmy222与x轴负半轴交于点A,顶点为B,且对称轴与x轴交于点C。(1)求点B的坐标(用含m的代数式表示) ;(2)D为OB中点,直线AD交y轴于E,若E(0,2) ,求抛物线的解析式;(3)在( 2)的条件下,点M在直线OB上,且使得AMC的周长最小,P在抛物线上,Q在直线BC上,若以QPMA、为顶点的四边形是平行四边形,求点P的坐标。4、已知关于x的方程2(1)(4)30m xm x。(1) 若方程有两个不相等的实数根,求m的取值范围;(2) 若正整数m满足822m,设二次函数2(1)(4)3y

11、m xm x的图象与x轴交于AB、两点,将此图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 11 页 - - - - - - - - - - 最新资料推荐6 个新的图象; 请你结合这个新的图象回答:当直线3ykx与此图象恰好有三个公共点时,求出k的值(只需要求出两个满足题意的k 值即可)。5 如图,抛物线y=ax2+2ax+c(a0 )与 y 轴交于点 C(0,4) ,与 x 轴交于点A( 4,0)和 B(1)求该抛物线的解析式

12、;(2)点 Q 是线段 AB 上的动点,过点Q 作 QEAC ,交 BC 于点 E,连接 CQ当 CEQ 的面积最大时,求点Q 的坐标;(3)平行于 x 轴的动直线l 与该抛物线交于点P,与直线 AC 交于点 F,点 D 的坐标为( 2,0) 问是否有直线l,使 ODF 是等腰三角形?若存在,请求出点F 的坐标;若不存在,请说明理由三、中考二次函数代数型综合题题型一、抛物线与x轴的两个交点分别位于某定点的两侧例 1已知二次函数yx2(m1)xm2 的图象与x轴相交于A(x1,0) ,B(x2,0)两点,且x1x2(1)若x1x20,且m为正整数,求该二次函数的表达式;(2)若x11,x21,求

13、m的取值范围;(3)是否存在实数m,使得过A、B两点的圆与y轴相切于点C(0,2) ,若存在,求出m的值;若不存在,请说明理由;(4)若过点D(0,12)的直线与( 1)中的二次函数图象相交于M、N两点,且MDDN13,求该直线的表达式题型二、 抛物线与x 轴两交点之间的距离问题例 2 已知二次函数y= x2+mx+m-5 ,(1)求证:不论m取何值时,抛物线总与x 轴有两个交点;(2)求当 m取何值时,抛物线与x 轴两交点之间的距离最短题型三、抛物线方程的整数解问题精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - -

14、- -第 6 页,共 11 页 - - - - - - - - - - 最新资料推荐7 例1已知抛物线222(1)0yxmxm与 x 轴的两个交点的横坐标均为整数,且m 5,则整数 m的值为 _ 例 2已知二次函数yx22mx4m8(1)当 x2 时,函数值y 随 x 的增大而减小,求m 的取值范围;(2)以抛物线yx22mx4m8 的顶点A为一个顶点作该抛物线的内接正AMN(M,N 两点在拋物线上) ,请问:AMN的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由;(3)若抛物线yx22mx4m8 与x轴交点的横坐标均为整数,求整数m 的值题型四、抛物线与对称,包括:点与点

15、关于原点对称、抛物线的对称性、数形结合例 1已知抛物线2yxbxc(其中 b0,c0)与 y 轴的交点为A,点 A 关于抛物线对称轴的对称点为 B(m,n),且 AB=2. (1)求 m,b 的值(2)如果抛物线的顶点位于x 轴的下方,且BO=20。求抛物线所对应的函数关系式(友情提醒:请画图思考)题型五、抛物线中韦达定理的广泛应用(线段长、定点两侧、点点关于原点对称、等等)例 1已知:二次函数2y4xxm的图象与 x 轴交于不同的两点A (1x,0) 、B (2x,0) (1x2x) ,其顶点是点C,对称轴与x 轴的交于点D(1)求实数 m的取值范围;(2)如果(1x+1) (2x+1)=8

16、,求二次函数的解析式;(3)把( 2)中所得的二次函数的图象沿y 轴上下平移,如果平移后的函数图象与x 轴交于点1A、1B,顶点为点C1,且111A B C是等边三角形,求平移后所得图象的函数解析式综合提升1已知二次函数的图象与x轴交于A,B两点,与y轴交于点C(0,4),且 |AB| 23,图象的对称轴为x1(1)求二次函数的表达式;(2)若二次函数的图象都在直线yxm的下方,求m的取值范围A O x y 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 11 页 - - - - - - -

17、- - - 最新资料推荐8 2已知二次函数yx2mxm2(1)若该二次函数图象与x轴的两个交点A、B分别在原点的两侧,并且AB5,求m的值;(2) 设该二次函数图象与y轴的交点为C, 二次函数图象上存在关于原点对称的两点M、N, 且SMNC 27,求m的值3. 已知关于x的一元二次方程x22(k1)xk20 有两个整数根,k5 且k为整数(1)求k的值;(2)当此方程有两个非零的整数根时,将关于x的二次函数yx22(k1)xk2的图象沿x轴向左平移 4 个单位,求平移后的二次函数图象的解析式;(3)根据直线yxb与( 2)中的两个函数图象交点的总个数,求b的取值范围4已知二次函数的图象经过点A

18、(1,0)和点B(2,1),且与y轴交点的纵坐标为m(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围;(3)若二次函数的图象截直线yx1 所得线段的长为22,求m的值四、中考二次函数定值问题1. (2012 江西南昌 8 分) 如图,已知二次函数L1:y=x2 4x+3 与 x 轴交于 AB两点(点A在点 B左边) ,与 y 轴交于点 C(1)写出二次函数L1的开口方向、对称轴和顶点坐标;(2)研究二次函数L2:y=kx24kx+3k(k0) 写出二次函数L2与二次函数L1有关图象的两条相同的性质;若直线y=8k 与抛物线L2交于 E

19、、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由2. (2012 山东潍坊 11 分)如图,已知抛物线与坐标轴分别交于A(2,O)、B(2,0) 、 C(0, l)精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 8 页,共 11 页 - - - - - - - - - - 最新资料推荐9 三点,过坐标原点O的直线 y=kx 与抛物线交于M 、N两点分别过点C、D(0, 2)作平行于x 轴的直线1l、2l (1)求抛物线对应二次函数的解析式; (2)求证以 ON为直径的

20、圆与直线1l相切; (3)求线段 MN的长 ( 用 k 表示) ,并证明 M 、N两点到直线2l的距离之和等于线段MN的长3. (2012 浙江义乌 12 分) 如图 1,已知直线y=kx 与抛物线2422y=x +x273交于点 A(3,6) (1)求直线 y=kx 的解析式和线段OA的长度;(2)点 P为抛物线第一象限内的动点,过点P作直线 PM ,交 x 轴于点 M (点 M 、O不重合),交直线OA于点 Q,再过点 Q作直线 PM的垂线,交y 轴于点 N试探究:线段QM 与线段 QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图 2,若点 B为抛物线上对称轴

21、右侧的点,点E在线段 OA上(与点 O 、A不重合),点 D ( m ,0)是 x 轴正半轴上的动点,且满足BAE= BED= AOD 继续探究:m在什么范围时,符合条件的E点的个数分别是1 个、 2 个?4 ( 2011? 株洲)孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线y=ax2(a0)的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O,两直角边与该抛物线交于A、B 两点,请解答以下问题:(1)若测得 OA=OB=22(如图 1) ,求 a 的值;(2)对同一条抛物线,孔明将三角板绕点O 旋转到如图2 所示位置时,过B 作 BFx 轴于点F,测得 OF=1,写

22、出此时点B 的坐标,并求点A 的横坐标;(3)对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 9 页,共 11 页 - - - - - - - - - - 最新资料推荐10 FEyxBAO精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 10 页,共 11 页 - - - - - - - - - - 文档编码:KDHSIBDSUFVBSUDHSIDHSIBF-SDSD587FCDCVDCJUH 欢迎下载 精美文档欢迎下载 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 11 页,共 11 页 - - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁