《初中数学教学反思1.doc》由会员分享,可在线阅读,更多相关《初中数学教学反思1.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学教学反思1初中数学教学反思1初中数学教学反思1人教版七上3.2.2解一元一次方程移项教学反思这次要学习的方程类型是两边都有x和常数项,通过移项的方法化归到合并同类项的方程类型。教学重点是用移项解一元一次方程,难点是移项法则的探究。我是从复习合并同类项-解方程(特点是含x的项全部在左边,常数项全部在右边。)开始,引出课本上的“分书”问题,应用题本身对学生来说,理解上有点难度,讲解其中的数量关系不是本节课的重点,所以我避重就轻地给了学生分析提示,通过填空的形式,找出数量关系,进而列出方程。列出方程3x+20=4x-25后,发现方程两边都有x和常数项,这个方程怎么解?从而引出本节课的学习内容
2、:怎样解此类方程。方程出示后,通过学生观察,怎样把它变为我们之前的方程,也就是含x的项全部要在左边,常数项在右边。学生回答右边的4x要去掉,根据等式性质1,两边要同时减去4x才成立。左边常数项20用同样的方法去掉,通过方框图一步步演示方程的变化,最后成为3x-4x=-25-20,变为之前学过的方程类型。通过原方程、新方程的比较(其中移项的数用不同颜色表示出来),发现变形后相当于把4x从右边移到左边变为-4x,20从左边移到右边变为-20,进而揭示什么是移项,在移项中强调要变号,没有移动的项是不要变号的,再让学生思考移项的作用:把它变为我们学过的合并同类项的方程。学习了原理之后,把例题做完,板示
3、解题步骤,特别是每一步的依据,进而给学生总结出移项解方程的三步:移项、合并同类项、系数化为1。练习反馈环节,让学生自己练习一道解方程,明确各步骤,下面分别是移项正误判断、解方程、应用题,分层次让学生掌握移项法则以及解方程,最后再解决实际问题。本节课主要存在的问题有:1对学生的实际情况了解不够。2语言不够简练,教师分析得多,学生的参与讨论性不高,发表看法机会少,限制了学生的语言表达能力和数学思维的锻炼。3课堂学生练习环节有问题,其中男生板演了一道题,以为简单就过了,实际在后面发现错了,导致教学进入到应用题部分,再回过头来纠错,这是课堂教学中的大忌。4.点评作业时,应该让学生多说是怎么做的,说出各
4、步骤,使得学生真正掌握移项解一元一次方程的方法。在教学媒体允许的情况下,应该使用实物投影对学生作业进行点评,可以清晰地展示作业中的典型错误,从而更好地了解学生的掌握情况。扩展阅读:初中数学教学反思1初中数学教学反思1王志远实践表明,培养学生把解题后的反思应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法。解题是学生学好数学的必由之路,但不同的解题指导思想就会有不同的解题效果,养成对解题后进行反思的习惯,即可作为学生解题的一种指导思想。反思对学生思维品质的各方面的培养都有作积极的意义。反思题目结构特征可培养思维的深刻性;反思解题思路可培养思维的广阔性;反思解
5、题途径,可培养思维的批判性;反思题结论,可培养思维的创造性;运用反思过程中形成的知识组块,可提高学思思维的敏捷性;反思还可提高学生思维自我评价水平,从而可以说反思是培养学生思维品质的有效途径。有研究发现,数学思维品质以深刻性为基础,而思维的深刻性是对数学思维活动的不断反思中实现的,大家知道,数学在锻炼人的逻辑思维能力方面有特殊的作用,而这种锻炼老师不可能传授,只能是由学生独立活动过程中获得。因此,在不增加学生负担的前提下,要求作业之后尽量写反思,利用作业空出的反思栏给老师提出问题,结合作业作出合适的反思。对学生来说是培养能力的一项有效的思维活动,从所教学生来看,一部分学生根本不按老师要求进行作
6、业后的反思,而这部分学生95%的数学能力很低、成绩差,他们只会做“结构良好”的题目,以获得对问题的答案为目标,不会提问,这部分学生中,没有一个会对命题进行推广,而坚持写反思的学生情况就大不一样,因此,培养学生反思解题过程是作业之后的一个重要环节,具有很大的现实意义。案例1,在完成解直角三角形“应用举例”的5个例题后,启发学生对5个题目的解题过程进行类比性反思,出示反思题目:请同学们再看看例题的解题过程,特别要注意在这些过程中相同方法的归纳概括,通过类比反思你能发现什么?在教师的引导下,同学们发现这几个题表面虽有许多不同之处,但却有如下几点相同:它们都有一个实际问题作背景;都用到了方程的知识;都
7、用到了锐角三角函数的定义;都用到了几何知识。在此基础上老师说:我通过解这几个题的过程的反思与同学们相似,我的反思结论是它们都运用了同一个解题思维策略或同一个解题模式,就是实际问题几何化,几何问题方程化,而列方程的根据正好是刚学过的锐角三角函数的定义,这样就把几个例题的思考过程和解题过程统一成了下列模式(板书,并解释每个箭头的意义)通过对5个例题解题后的反思,学生对解决这类问题的思路更加清晰了,并对反思的对象和方法有了一些体会。案例2:胡玲同学在解完“梯形ABCD中,点E是腰AB上一点,在腰CD上求作一点F,使CF:FD=BE:EA”之后在作业的反思栏内写道:“老师,如果E点在底边上,如何在另一
8、底上找到F,我有一种方法,不知对否?作法,1.连结AC;2.作EO/DC交AC于O;3.作OF/AB交BC于F。AE:ED=BF:FC。”同时,另一位学生在作业本中提出同样的问题,写道:“如果,在梯形ABCD中,点E是底边上一点,那么在另一底边找一点F,使AE:ED=BF:FC,应怎样找?”两位学生对同一个题目,提出了相同的问题,前者解决了问题,但不能用准确的数学语言表述问题,后者虽没有找到解决问题的方法,但能准确的描述问题,两位学生都良好的运用了直觉思维,这本身就是一种创新能力。初中数学教学反思2王志远实践表明,培养学生把解题后的反思应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习
9、效果、培养能力的行之有效的方法。解题是学生学好数学的必由之路,但不同的解题指导思想就会有不同的解题效果,养成对解题后进行反思的习惯,即可作为学生解题的一种指导思想。我及时公布了两位的猜想,并鼓励他们的这种主动猜想的创新精神,公布之后,同学们反映强烈,并进行了广泛的讨论,并且在讨论中思维更加深刻,问题得到引伸,方法也出现了多种。第二次作业本交上来了,一位学生对在讨论中提出的新方法给出了证明,他写道:“今天江乔说,如下图,已知梯形ABCD,E是底边的一点,延长腰交于F,连结EA交AB与G就是昨天胡玲要找的点。我觉得它说的是对的;证明如下:(证明略)”我也即时公布了这位学生提供的江乔的发现和他的证明
10、,并说,江乔能想到这种方法,正如他在反思中所说,是他对解过的P244第22题的反思在这里起了作用,因为当时作了深刻的反思,从而对做过的题目有深刻的映象,自然很容易想到这种方法,因此,同学们应向他学习,解题以后不要停止,一定要多作反思。接下来的几天中,都有同学围绕着这个问题继续思考,并且有的同学还将此问题作了进一步引伸,如胡静在反思中写道:“任意多边形,知道一边上一点,就可以由胡玲那种方法,在其它任一边上找到一点,使与分得的线段的比等于这点分得的这边上的两条线段的比,只要先把多边形变成三角形后就行。对吗?”我批语道:“你已推广了胡玲提出的命题,很好,且你是对的,请试一试能不能给出证明”。鼓励学生
11、结合解题后的反思,提出问题,并将其指定为反思内容之一,既能充分发挥学生的主体性,又能形成师生互动、生生互动的教学情境,还能培养学生的不断探索的精神,从而使学生的创新意识得到保护和培养。这无疑对学生“心态的开放,主体的凸现,个性的张显”是十分有益的。通过解题后对习题特征进行反思,用自己的语言或数学语言对习题进行重新概述,培养思维的深刻性,促进知识的正向迁移,提高解题能力。思维的深刻性表现在通过表面现象和外部联系提示事物的本质特征,进而深入地思考问题,解完题后经常通过反思题目的特征,加深对题目本质的领悟,从而获得一系列的思维成果,积累属于个人的知识组块,有助于培养思维的深刻性,从而促进知识的正迁移
12、。如:案例3:解完“如图,AD是ABC的高,AE是ABC的外接圆的直径,求证:AB?AC=AE?AD”后,引导学生对题目本质特征进行反思,发现此题的圆可以不画出来,因为任意三角形都有外接圆,其处接圆的直径则是客观存在的。直径的位置不一定要画在如图的位置,只要有三角形外接圆的直径出现,就应该有上述结论。通过对题目本质的领悟,再用自己的语言对习题进行概述就得到了“任三角形的两边、第三边上的高,和它外接圆直径四个量中任知其中三个,就可以求得第四个”,“三角形外接圆的直径等于外接圆直径和等三边上的高的积”通过反思,由于学生已形成了求任意三角形外接圆直径的一种特殊方法性的知识组块,所以在一次公开课上,老
13、师口述完“已知三角形两边分别是3、6,第三边上的高为2,求三角形外接圆的直径”时,学生就能脱口说出正确答案是“9”。促进了知识的正向迁移,培养了思维的每捷性。经过一段时间课改的具体实施,我发现也真正体会到,许多曾经对数学不感兴趣的学生,都对数学有了浓厚的兴趣,也使我真正体会到只要你给学生创造一个自由活动的空间,学生便会还给你一个意外的惊喜。初中数学教学反思3王志远“教然后而知困。”教师在教育教学过程中时常反思,会不断地发现困惑,激发教师终身学习。以下是本人在教育教学过程中的体会与反思。长期以来,对教师教学的要求强调领会教学大纲、驾驭教材较多,因此教师钻研教材多,研究教法多,而研究学生思维活动较
14、少,因而选择适合学生认知过程的教法也少。学生对知识的获得一般都要经过主动探究,小组合作,主动建构过程。在新课程背景下,如何让感到数学好学,把学数学当成一种乐趣,真正做初中数学的小主人。然后有计划、有步骤、分阶段、分层次、有针对性地指导学生掌握各种学习方法。使我们的学生能够主动地、独立地学习,达到新课程要求标准。具体数学学习方法的指导是长期艰巨的任务,抓好学法指导对今后的学习会起到至关重要的作用。主要从以下几个方面来谈一谈。一、引导学生预习,细心读教材培养学生的自学能力学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出问题和疑点。在指导学生预习时应要求学生做到:新知
15、识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课堂的学习效率,寻求正确的学习方法。预习前教师先布置预习提纲,使学生有的放矢。实践证明,养成良好的预习习惯,能使学生变被动学习为主动学习,同时能逐渐培养学生的自学能力。二、加强互助学习,共同提高教师在教学中要注意培养差生的自信心外,更应该充分利用优等生这个教育资源,进行好生差生配对,这也是合作学习的一种方式,它从以人为本的理念出发,关注了差生的发展,构建了团结,合作共同发展的良好的,和谐的学习环境。同时它也弥补了教师课后辅导时间不足的缺陷。三、课内重视听讲,培养学生的思维能力初中新生往往对课程增多、课堂学习容量加大不适应,顾此失彼、精力分
16、散,使听课效率下降。因此,上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。四、指导学生思考数学学习是学习者在原有数学认知结构基础上,通过新旧知识之间的联系,形成新的数学认知结构的过程。由于这种工作最终必须由每个学习者相对独立地完成。因此,在教学过程中老师对学生要进行思法指导,教师应着力于以下几点:使学生达到融会贯通的境界。在思维方法指导时,应使学生注意:多思、勤思,随听随思;深思,即追根溯源地思考,善于大胆提出问题;善思,由听和观察去联想、猜想、归纳;五、适当多做题,养成良好的解题习惯。要想学好数学,多做题目是难免的,但不是烂做搞题海战术,熟悉掌握各种题型的解题思路。学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习。以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的练习巩固、深化理解知识的应有作用。六、指导学生记忆。教学生如何克服遗忘,以科学的方法记忆数学知识,对学生来说是很有益处的。初中新生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成分较多,理解记忆的成分较少,这就不能适应初中学生的新要求。因此,重视对学生进行记忆方法指导,这是初中数学教学的必然要求。第 10 页 共 10 页