SPC统计分析.pptx

上传人:修**** 文档编号:12432130 上传时间:2022-04-24 格式:PPTX 页数:158 大小:1.09MB
返回 下载 相关 举报
SPC统计分析.pptx_第1页
第1页 / 共158页
SPC统计分析.pptx_第2页
第2页 / 共158页
点击查看更多>>
资源描述

《SPC统计分析.pptx》由会员分享,可在线阅读,更多相关《SPC统计分析.pptx(158页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、统 计 过 程 控 制SPC- Statistical Process Control苏州卓一企业管理顾问有限公司讲师:康建平2022-4-241SPC统计过程控制事实胜雄辩改进再提高2022-4-242主要内容SPC统计过程控制概述计量型控制图制作步骤及判定原则计数型控制图制作步骤及判定原则SPC统计过程控制小结2022-4-243控制图的历史控制图是1924年由美国品管大师W.A. Shewhart博士发明。因其用法简单且效果显著,人人能用,到处可用,遂成为实施质量管理时不可缺少的主要工具,当时称为(Statistical Quality Control)。2022-4-244控制图的历史

2、休哈特在20世纪20年代提出了过程控制理论以及监视和控制过程的工具-控制图;世界上第一张控制图是休哈特在1924年5月16日提出的不合格品率(p)控制图;休哈特主要贡献在于:应用过程控制理论能够在生产线上保证预防原则的实现。在产品制造过程中,产品质量特性值总是波动的。2022-4-2451924年发明W.A. Shewhart1931发表1931年Shewhart发表了“Economic Control of Quality ofManufacture Product”19411942制定成美国标准Z1-1-1941 Guide for Quality ControlZ1-2-1941 Con

3、trol Chart Method foranalyzing DataZ1-3-1942 Control Chart Method forControl Quality During Production控制图的发展2022-4-246SPC统计过程控制1924年W.A. Shewhart提出SPD统计过程诊断侯铁林1947年提出多元T控制图张公绪1982年提出两种质量多元逐步诊断理论等SPA统计过程调整90年代起由SPD发展为SPA,国外称之为ASPC(算法的统计过程控制)仍在发展过程之中控制图的发展2022-4-247控制图在英国及日本的历史英国在1932年,邀请W.A. Shewhart

4、博士到伦敦,主讲统计质量管理,而提高了英国人将统计方法应用到工业方面之气氛。日本在1950年由W.E. Deming博士引到日本同年日本规格协会成立了质量管理委员会,制定了相关的JIS标准2022-4-248控制图应用范例1984年日本名古屋工业大学调查了115家日本各行各业的中小型工厂,结果发现平均每家工厂采用137张控制图;美国柯达彩色胶卷公司有5000多名职工,一共应用了35000张控制图,平均每名职工做七张控制图2022-4-249SPC&SQCPROCESS原料測量結果针对产品所做的仍只是在做SQC针对过程的重要控制参数所做的才是SPC2022-4-2410SPC概要说明目的:寻找有

5、效的方法来提供产品和服务,并不断在价值上得以改进;目标:是达到顾客满意(包括内部和外部顾客);对象:从事统计方法应用的管理人员;范围:基本统计方法包括与统计过程控制及过程能力分析有关的方法,但不是全部2022-4-2411a).收集数据并用统计方法解释不是最终目标,最终目标是对实现过程的不断理解;b).研究变差和应用统计知识改进性能的基本概念适用于任何领域;c).SPC代表统计过程控制;d).结合实际过程控制理解;e).只是应用统计方法的开始;f).假设的前提是测量系统是处于受控状态并对数据的总变差没有大的影响SPC概要说明2022-4-2412SPC设想藉由以往的数据了解正常的变异范围设定成

6、控制界限绘点判定是否超出界限纠正异常持续改进,缩小控制界限2022-4-2413SPC常用术语解释平均值(X)一组测量值的均值极差(Range)一个子组、样本或总体中最大与最小值之差(Sigma)用于代表标准差的希腊字母标准差(Standard Deviation)过程输出的分布宽度或从过程中统计抽样值(例如:子组均值)的分布宽度的量度,用希腊字母或字母s(用于样本标准差)表示。分布宽度(Spread) 一个分布中从最小值到最大值之间的间距中位数 x将一组测量值从小到大排列后,中间的值即为中位数。如果数据的个数为偶数,一般将中间两个数的平均值作为中位数。单值(Individual)一个单个的单

7、位产品或一个特性的一次测量,通常用符号 X 表示。2022-4-2414中心线(Central Line)控制图上的一条线,代表所给数据平均值。过程均值(Process Average)一个特定过程特性的测量值分布的位置即为过程均值,通常用 X 来表示。链(Run)控制图上一系列连续上升或下降,或在中心线之上或之下的点。它是分析是否存在造成变差的特殊原因的依据。变差(Variation)过程的单个输出之间不可避免的差别;变差的原因可分为两类:普通原因和特殊原因。特殊原因(Special Cause)一种间断性的,不可预计的,不稳定的变差根源。有时被称为可查明原因,它存在的信号是:存在超过控制限

8、的点或存在在控制限之内的链或其它非随机性的图形。SPC常用术语解释2022-4-2415普通原因(Common Cause)造成变差的一个原因,它影响被研究过程输出的所有单值;在控制图分析中,它表现为随机过程变差的一部分。过程能力(Process Capability)是指按标准偏差为单位来描述的过程均值和规格界限的距离,用Z来表示。移动极差(Moving Range)两个或多个连续样本值中最大值和最小值之差。计量型数据(Variables Data)定量的数据,可用量测值分析。计数型数据(Attributes Data)可以用来记录和分析的定性数据。SPC常用术语解释2022-4-2416预

9、防与检测PROCESS原料人机 法环测量测量结果好不好不要等产品做出来后再去看它好不好而是在制造的时候就要把它制造好2022-4-2417预防与检测过程控制的需要检测容忍浪费预防避免浪费2022-4-2418波动的概念 波动的概念是指在现实生活中没有两件东西是完全一样的。生产实践证明,无论用多么精密的设备和工具,多么高超的操作技术,甚至由同一操作工,在同一设备上,用相同的工具,用相同材料的生产同种产品,其加工后的质量特性(如:重量、尺寸等)总是有差异,这种差异称为波动,公差制度实际上就是对这个事实的客观承认。消除波动不是SPC的目的,但通过SPC可以对波动进行预测和控制。2022-4-2419

10、制程组成和波动原因波动原因人机器材料方法测量环境2022-4-2420波动的种类 正常波动:是由普通(偶然)原因造成的。如操作方法的微小变动,机床的微小振动,刀具的正常磨损,夹具的微小松动,材质上的微量差异等。正常波动引起工序质量微小变化,难以查明或难以消除。它不能被操作工人控制,只能由技术、管理人员控制在公差范围内 异常波动:是由特殊(异常)原因造成的。如原材料不合格,设备出现故障,工夹具不良,操作者不熟练等。异常波动造成的波动较大,容易发现,应该由操作人员发现并纠正2022-4-2421普通原因和特殊原因指的是造成随着时间推移具有稳定的且可重复的分布过程中的许多变差的原因,我们称之为:“处

11、于统计控制状态”、“受统计控制”,或有时简称“受控”,普通原因表现为一个稳定系统的偶然原因。只有变差的普通原因存在且不改变时,过程的输出才可以预测。指的是造成不是始终作用于过程的变差的原因,即当它们出现时将造成(整个)过程的分布改变。除非所有的特殊原因都被查找出来并且采取了措施,否则它们将继续用不可预测的方式来影响过程的输出。如果系统内存在变差的特殊原因,随时间的推移,过程的输出将不稳定。2022-4-2422普通原因和特殊原因每件产品的尺寸与别的都不同每件产品的尺寸与别的都不同但它们形成一个模型但它们形成一个模型,若稳定若稳定,可以描述为一个分布可以描述为一个分布分布可以通过以下因素来加以区

12、分分布可以通过以下因素来加以区分范围范围范围范围范围范围范围范围范围范围范围范围范围范围范围范围范围范围范围范围或这些因素的组合或这些因素的组合位置位置分布宽度分布宽度形状形状2022-4-2423普通原因和特殊原因目标值线目标值线预测预测时间时间范围范围范围范围时间时间目标值线目标值线如果仅存在变差的普通原因,随着时间的推移,过程的输出形成一个稳定的分布并可预测如果存在变差的特殊原因,随着时间的推移,过程的输出不稳定2022-4-2424普通原因与特殊原因举例合格原料的微小变化机械的微小震动气候、环境的微小变化等等使用不合格原料设备调整不当新手作业,违背操作规程刀具过量磨损等等2022-4-

13、2425普通原因、特殊原因示意图普通原因的波动范围异常原因导致的波动范围异常原因导致的波动范围UCLLCL2022-4-2426局部措施和对系统采取措施局部措施通常用来消除变差的特殊原因通常由与过程直接相关的人员实施大约可纠正15%的过程问题对系统采取措施通常用来消除变差的普通原因几乎总是要求管理措施,以便纠正大约可纠正85%的过程问题2022-4-2427局部措施、系统措施示意图解决普通原因的系统措施解决异常原因的局部措施解决异常原因的局部措施UCLLCL2022-4-2428过程控制系统A.过程的理解 B.统计过程控制思想C.数据类型 D.正态分布简介E.统计控制状态 F.防止两类错误20

14、22-4-2429A.过程的理解有反馈的过程控制系统模型过程的呼声统计方法我们工作的方式/资源的融合产品或服务顾客识别不断变化的需求和期望顾客的呼声输入输出过程/系统人设备材料方法环境2022-4-2430B.统计过程控制思想假定过程是处于受控状态,一旦显示偏离这一状态,极大可能是过程失控,需要及时调整。产品质量波动原因是由普通原因和特殊原因引起的,产品质量总是变化的。受控状态:指仅由普通原因引起的质量波动,受控状态的产品质量也应该是波动的。SPC应用概率论基本原理:小概率事件在一次试验当中是不可能发生的(指发生机会非常小的事件)。2022-4-2431C.数据类型数据计量型数值计数型数值计件

15、值计点值质量数据的特点是数据总是波动的,质量数据的变差是具有统计规律性的,是建立在大量重复试验基础上。2022-4-2432D.正态分布简介 直方图中对称型的形状是“中间高,两边低,左右基本对称”。若样本容量不断增加,并且使分组增多、分组的区间不断细分,则直方图的对称性越来越接近如下图所表示的曲线:-+abxf(x)此曲线是正态密度函数曲线P(aXb)f(x)dx2022-4-2433D.正态分布简介群体平均值=标准差=+k -k 抽样718. 221222)(eexkk2022-4-2434D.正态分布简介k在内的概率在外的概率0.6750.00%50.00%168.26%31.74%1.9

16、695.00%5.00%295.45%4.55%2.5899.00%1.00%399.73%0.27%2022-4-243568.26%95.45%99.73%+1+2+3-1-2-3D.正态分布简介2022-4-2436D.正态分布简介x为总体的取值是总体的平均值,是位置参数,是改变正态分布曲线的位置,不改变形状;是总体标准差,表示数据分散程度的统计量,是形状参数,不改变正态曲线的位置,改变其形状大(矮胖)小(高瘦);实际运用中用s(样本标准差)、 用x(样本均值)代替,即s、 x 。2022-4-2437D.正态分布简介正态分布曲线性质:a.曲线关于x= 对称;b.在x= 处曲线处于最高点

17、,当x向左、向右远离时曲线不断降低;c.曲线形状由和唯一确定,或简记:N()。d.当 =0,=1时正态分布称为标准正态分布简记为N(0,1)。2022-4-2438D.正态分布简介P(3X 3) P(3 )/ (X )/ (3 )/ )P(3 (X )/ 3)2*(1-0.00135)-1=0.9973=99.73%-3+3LCLUCLCL3 3原理原理2022-4-2439E.统计控制状态-3+3LCLUCLCL产品质量特性值落在(-3 ,+3)范围内概率为99.73%,落在该区域范围之外的概率是0.27%。休哈特根据这一点发明了控制图。2022-4-2440E.统计控制状态 统计控制状态是

18、由过程中只有普通原因产生的变差引起,控制状态是生产所追求的目标,因为在控制状态下具有:对产品质量有完全把握;生产是最经济的,在控制状态下所产生的不合格品最少,生产最经济;在控制状态下,过程的变差的最小。2022-4-2441F.防止两类错误所有的统计方法都是会产生错误,因为我们只控制99.73%,要防止两种错误:虚发警报 漏发警报2022-4-2442管制界限和规格界限规格界限:是用以说明品质特性之最大许可值,来保证各个单位产品之正确性能。管制界限:应用于一群单位产品集体之量度,这种量度是从一群中各个单位产品所得之观测值所计算出来者。2022-4-2443过程控制和过程能力2022-4-244

19、4过程控制和过程能力控制满足要求受控不受控可接受1类3类不可接受2类4类简言之,首先应通过检查并消除变差的特殊原因使过程处于受统计控制状态,那么其性能是可预测的,就可评定满足顾客期望的能力。2022-4-2445持续改进2022-4-2446过程改进循环PLANDOSTUDYACTPLANDOSTUDYACTPLANDOSTUDYACT1、分析過程本過程應做些什麼會出現什麼錯誤達到統計控制狀態確定能力2.維護過程監控過程性能查找偏差的特殊 原因並採取措施3.改变过程从而更好理解普通原因变差减少普通原因变差2022-4-2447控制图示例: :上控制界限(UCL) )中心线(CL)下控制界限(L

20、CL) 控制图是用于分析和控制过程质量的一种方法。控制图是一种带有控制界限的反映过程质量的记录图形,图的纵轴代表产品质量特性值(或由质量特性值获得的某种统计量);横轴代表按时间顺序(自左至右)抽取的各个样本号;图内有中心线(记为CL)、上控制界限(记为UCL)和下控制界限(记为LCL)三条线(见下图)。控制图定义2022-4-2448控制图原理说明工序处于稳定状态下,其计量值的分布大致符合正态分布。由正态分布的性质可知:质量数据出现在平均值的正负三个标准偏差(X3)之外的概率仅为0.27%。这是一个很小的概率,根据概率论 “视小概率事件为实际上不可能” 的原理,可以认为:出现在X3区间外的事件

21、是异常波动,它的发生是由于异常原因使其总体的分布偏离了正常位置控制限的宽度就是根据这一原理定为3 2022-4-244968.26%95.45%99.73%+1+2+3-1-2-3控制图原理说明2022-4-2450控制图所用的统计原理计量型Xbar-RXbar-sX中位数-RX-Rm正态分布计数型Pnp二项分布Cu泊松分布2022-4-2451控制图过程控制的工具上控制限中 线下控制限1.收集:收集数据并画在图上2.控制:根据过程数据计算试验控制限;识别变差的特殊原因并采取措施3.分析及改进:确定普通原因变差的大小并采取减小它的措施重复这三个阶段从而不断改进 过程步骤2022-4-2452控

22、制图的目的管制和一般的统计图不同,因其不仅能将数值以曲线表示出来,以观其变异之趋势,且能显示变异系属于机遇性或非机遇性,以指示某种现象是否正常,而采取适当之措施。利用控制限區隔是否為非機遇性2022-4-2453控制图的益处合理使用控制图能供正在进行过程控制的操作者使用有于过程在质量上和成本上能持续地,可预测地保持下去使过程达到更高的质量更低的单件成本更高的有效能力为讨论过程的性能提供共同的语言区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南。2022-4-2454 计量型控制图平均数与极差控制图( Chart)平均数与标准差控制图( Chart)中位数与极差控制图( Ch

23、art)个別值与移动极差控制图( chart)计数值控制图不良率控制图(P chart)不良数控制图(Pn chart,又称np chart或d chart)缺点数控制图(C chart)单位缺点数控制图(U chart)XRX RmX RX 控制图种类(以数据性质分)2022-4-2455分析用控制图:根据样本数据计算出控制图的中心线和上、下控制界限,画出控制图,以便分析和判断过程是否处于于稳定状态。如果分析结果显示过程有异常波动时,首先找出原因,采取措施,然后重新抽取样本、测定数据、重新计算控制图界限进行分析。控制用控制图:经过上述分析证实过程稳定并能满足质量要求,此时的控制图可以用于现场

24、对日常的过程质量进行控制。控制图种类(依用途来分)2022-4-2456控制图种类(依用途来分)解析用控制图决定方针用制程解析用制程能力研究用制程管制准备用管制用控制图n追查不正常原因n迅速消除此项原因n并且研究采取防止此项原因重复发生之措施。解析用稳定控制用2022-4-2457两种控制图应用示意说明初期的二十五点计算时有些超出控制界限,此时须寻找原因。连续二十五点在控制界限内,表示制程基本上已稳定,控制界限可以延用有点超出控制界限,表示此时状态已被改变,此时要追查原因,必要时必须重新收集数据,重新考虑稳定状态解析用稳定控制用再调整2022-4-2458控制图的选择“n”=1025控制图的选

25、定资料性质不良数或缺陷数单位大小是否一定“n”是否一定样本大小n2CL的性质“n”是否较大“u”图图“c”图图“np”图图“p”图图X-Rm图图X-R图图X-R图图X-s图图计数值计量值“n”=1n1中位数平均值“n”=25缺陷数不良数不一定一定一定不一定2022-4-2459CASE STUDY质量特性样本数选用什么图长度5重量10乙醇比重1电灯亮不亮100每一百平方米的脏点100平方米2022-4-2460计量型数据控制图引言均值和极差图(X-R图)均值和标准差图(X-s)中位数和极差图(X-R)单值和移动极差图(X-MR)2022-4-2461与过程有关的说明结果举例结果举例控制图举例控

26、制图举例轴的外径(英寸)轴的外径(英寸)从基准面到孔的距离(从基准面到孔的距离(mm)电阻(电阻()轨道车通过时间(轨道车通过时间(h)工程更改处理时间(工程更改处理时间(h)用于均值测量的用于均值测量的X图图用于极差测量的用于极差测量的R图图人员人员设备设备环境环境材料材料方法方法测量结果测量结果计量单位计量单位(mm,kg等等)原点(原点(0mm,F等)等)12345672022-4-2462计量型数据控制图应用前提不准确不准确准确准确不精密不精密精密精密测量方法必须保证始终产生准确和精密的结果测量方法必须保证始终产生准确和精密的结果2022-4-2463大多过程和其输出具有可测量的特性;

27、量化的值比简单的是否陈述包含的信息更多;对较少的件数检查,可获得更多的有关过程的信息;因只需检查少量的产品,可缩短零件生产和采取纠正措施之间的时间间隔;可分析一个过程的性能和可量化所用的改进,为寻求持续改进提供信息。计量型数据控制图益处2022-4-2464建立控制图的四步骤A收集数据B计算控制限C过程控制解释D过程能力解释2022-4-2465建立X-R图的步骤A阶段收集数据A1选择子组大小、频率和数据子组大小子组频率子组数大小A2建立控制图及记录原始记录A3计算每个子组的均值X和极差RA4选择控制图的刻度A5将均值和极差画到控制图上2022-4-2466取样的方式取样必须达到组内变异小,组

28、间变异大样本数、频率、组数的说明2022-4-2467每个子组平均值和极差计算11009899100982989998101973999710010098410010010199995101999910099平均99.698.699.410098.2极差333222022-4-2468平均值和极差平均值的计算554321xxxxxxR值的计算minmaxxxR2022-4-2469计算控制限B1计算平均极差及过程平均值B2计算控制限B3在控制图上作出平均值和 极差控制限的控制线建立X-R图的步骤B2022-4-2470RDLCLRDUCLRCLRAXLCLRAXUCLXCLRRRXXX3422

29、全距管制圖平均值管制圖kRRRRkxxxxxkk.21321全距管制圖平均值管制圖管制圖RX 2022-4-2471 上述公式中A2,D3,D4为常系数,决定于子组样本容量。其系数值见下表 :n2345678910D43.272.572.282.112.001.921.861.821.78D3?0.080.140.180.22A21.881.020.730.580.480.420.340.340.31 注: 对于样本容量小于7的情况,LCLR可能技术上为一个负值。在这种情况下没有下控制限,这意味着对于一个样本数为6的子组,6个“同样的”测量结果是可能成立的。 X-R图计算公式系数2022-4-

30、2472过程控制解释C1分析极差图上的数据点C2识别并标注特殊原因(极差图)C3重新计算控制界限(极差图)C4分析均值图上的数据点超出控制限的点链明显的非随机图形超出控制限的点链明显的非随机图形C5识别并标注特殊原因(均值图)C6重新计算控制界限(均值图)C7为了继续进行控制延长控制限建立X-R图的步骤C2022-4-2473控制图的判读超出控制界限的点:出现一个或多个点超出任何一个控制界限是该点处于失控状态的主要证据UCLCLLCL異常異常2022-4-2474控制图的判读链:有下列现象之一即表明过程已改变连续7点位于平均值的一侧连续7点上升(后点等于或大于前点)或下降。UCLCLLCL20

31、22-4-2475控制图的判读明显的非随机图形:应依正态分布来判定图形,正常应是有2/3的点落于中间1/3的区域。UCLCLLCL2022-4-2476控制图的观察分析作控制图的目的是为了使生产过程或工作过程处于“控制状态”. 控制状态即稳定状态, 指生产过程或工作过程仅受偶然因素的影响, 产品质量特性的分布基本上不随时间而变化的状态. 反之, 则为非控制状态或异常状态.控制状态的标准可归纳为二条:第一条, 控制图上点不超过控制界限;第二条, 控制图上点的排列分布没有缺陷.2022-4-2477控制图的观察分析进行控制所遵循的依据:连续25点以上处于控制界限内;连续35点中, 仅有1点超出控制

32、界限;连续100点中, 不多于2点超出控制界限.五种缺陷链: 点连续出现在中心线 CL 一侧的现象称为链, 链的长度用链内所含点数多少来判别.当出现5点链时, 应注意发展情况, 检查操作方法有无异常;当出现6点链时, 应开始调查原因;当出现7点链时, 判定为有异常, 应采取措施.2022-4-2478控制图的观察分析从概率的计算中, 得出结论:点出在中心线一侧的概率A1=1/2点连续出现在中心线一侧的概率A1=(1/2)7 = 1/128 (0.7%)即在128次中才发生一次, 如果是在稳定生产中处于控制状态下, 这种可能性是极小的. 因此, 可以认为这时生产状态出现异常.偏离: 较多的点间断

33、地出现在中心线的一侧时偏离. 如有以下情况则可判断为异常状态.连续的11点中至少有10点出现在一侧时;连续的14点中至少有12点出现在一侧时;连续的17点中至少有14点出现在一侧时;连续的20点中至少有16点出现在一侧时.2022-4-2479控制图的观察分析倾向: 若干点连续上升或下降的情况称为倾向, 其判别准则如下:当出现连续5点不断上升或下降趋向时, 要注意该工序的操作方法;当出现连续6点不断上升或下降的趋向时, 要开始调查原因;当出现连续7点不断上升或下降的趋向时, 应判断为异常, 需采取措施.周期: 点的上升或下降出现明显的一定的间隔时称为周期.周期包括呈阶梯形周期变动、波状周期变动

34、、大小波动等情况.2022-4-2480控制图的观察分析接近: 图上的点接近中心线或上下控制界限的现象称为接近. 接近控制界限时, 在中心线与控制界限间作三等分线, 如果在外侧的1/3带状区间内存在下述情况可判定为异常:连续3点中有2点(该两点可不连续)在外侧的1/3带状区间内;连续7点中有3点(该3点可不连续)在外侧的1/3带状区间内;连续10点中有4点(该4点可不连续)在外侧的1/3带状区间内.2022-4-2481当首批数据都在试验控制限之内(即控制限确定后),延长控制限,将其作为将来的一段时期的控制限。当子组容量变化时(例如:减少样本容量,增加抽样频率),应调整中心限和控制限 。方法如

35、下: 估计过程标准偏差(用 表示),用现有的子组容量计算: = R/d2 式中R为子组极差均值, d2 为随样本容量变化的常数,如下表按照新的子组容量查表得到系数d2 、D3、D4 和 A2,计算新的极差和控制限。 为继续进行控制延长控制限2022-4-2482为继续进行控制延长控制限估计过程标准偏差和计算新的控制限2dRnewxnewxnewRnewRnewRAxLCLRAxUCLRDLCLRDUCLdR22342 n2345678910d21.131.692.062.332.532.702.852.973.082022-4-2483过程能力解释D1计算过程的标准偏差D2计算过程能力D3评价

36、过程能力D4提高过程能力D5对修改的过程绘制控制图并分析建立X-R图的步骤D2022-4-2484前提假设:过程处于统计稳定状态;过程的各测量值服从正态分布;工程及其它规范准确地代表顾客的需求;设计目标值位于规范的中心;测量变差相对较小前提说明:总存在抽样变差;没有“完全”受统计控制过程;实际分布不是完美的正态分布过程能力解释前提2022-4-2485计算过程能力对于X-R图,过程能力是通过计算Cpk,用 Cpk大小来确定过程能力,当所有点都受控后才计算该值。对于过程能力的初步估计值,应使用历史数据,但应剔除与特殊原因有关的数据点。当正式研究过程能力时,应使用新的数据,最好是25个或更多时期子

37、组,且所有的点都受统计控制。2022-4-24862)()2/(dRTXCa雙邊規格制程能力指标Ca2022-4-24872336dRLSLXCXUSLCLSLUSLCppp制程能力指标Cp双边规格只有上规格时只有下规格时2022-4-2488233),min(dRSxCxSCCCClplupuplpupk制程能力指标Cpk2022-4-2489当 Cpk1 说明制程能力差,不可接受;1Cpk1.33,说明制程能力可以,但需改善;1.33Cpk1.67,说明制程能力正常;1.67 Cpk,说明制程能力良好。评价过程能力2022-4-2490改善过程能力过程一旦表现出处于统计控制状态,该过程所保

38、持的控制水平即反应了该系统的变差原因过程能力。在操作上诊断特殊原因(控制)变差问题的分析方法不适于诊断影响系统的普通原因变差。必须对系统本身直接采取管理措施,否则过程能力不可能得到改进。有必要使用长期的解决问题的方法来纠正造成长期不合格的原因。可以使用诸如排列图分析法及因果分析图等解决问题技术。尽可能地追溯变差的可疑原因,并借助统计技术方法进行分析将有利于问题的解决2022-4-2491改善过程能力改善过程能力过程稳定,控制范围维持在一定的水平当中降低变差降低变差采取管理上的措施降低偶因,如此才能缩小控制界限,降低变差缩小控制限2022-4-2492绘制并分析修改后的过程控制图当对过程采取了系

39、统的措施后,其效果应在控制图上明显地反应出来; 控制图成为验证措施有效性的一种途径。对过程进行改变时,应小心地监视控制。这个变化时期对系统操作会是破坏性,可能造成新的控制问题,掩盖系统变化后的真实效果。在过程改变期间出现的特殊原因变差被识别并纠正后,过程将按一个新的过程均值处于统计控制状态。这个新的均值反映了受控制状态下的性能。可作为现行控制的基础。但是还应对继续系统进行调查和改进。2022-4-24931)(33),min(12nxxSxPxSPPPPniilplupuplpupk制程绩效指针的计算,其估计的标准差为总的标准差,包含了组内变异以及组间变异。总变异=组内变异+组间变异。过程绩效

40、指标Ppk2022-4-2494对过程进行改变时,应小心地监视控制2022-4-2495群体平均值=标准差=对的估计1)(12142nxxcSdRSnnnx群体标准差的估计2022-4-2496管制圖sX A收集数据:在计算各个子组的平均数和标准差其公式分别如下:554321xxxxxx1)(2nxxsi2022-4-2497SBLCLSBUCLSCLSAXLCLSAXUCLXCLRRRXXX3433標準差管制圖平均值管制圖B计算控制限管制圖sX 2022-4-2498C C过程控制解释(同X-R图解释)管制圖sX 2022-4-2499D D过程能力解释管制圖sX 4cs2022-4-241

41、00管制圖RX A收集数据一般情况下,中位数图用在样本容量小于10的情况,样本容量为奇数时更为方便。如果子组样本容量为偶数,中位数是中间两个数的均值。2022-4-24101RDLCLRDUCLRCLRAmXLCLRAmXUCLXCLXRRRXXX342323全距管制圖值管制圖管制圖RX B计算控制限计算控制限2022-4-24102C C过程控制解释过程控制解释( (同同X-RX-R图解释图解释) )管制圖RX 2022-4-24103管制圖RX 估计过程标准偏差:估计过程标准偏差:2dR2022-4-24104管制圖mRX 单值控制在检查过程变化时不如X-R图敏感。如果过程的分布不是对称的

42、,则在解释单值控制图时要非常小心。单值控制图不能区分过程零件间重复性,最好能使用X-R。由于每一子组仅有一个单值,所以平均值和标准差会有较大的变性,直到子组数达到100个以上。2022-4-24105A收集数据收集各组数据计算单值间的移动极差。通常最好是记录每对连续读数间的差值(例如第一和第二个读数点的差,第二和第三读数间的差等)。移动极差的个数会比单值读数少一个(25个读值可得24个移动极差),在很少的情况下,可在较大的移动组(例如3或4个)或固定的子组(例如所有的读数均在一个班上读取)的基础上计算极差。管制圖mRX 2022-4-24106mRmRmRmXmXxRDLCLRDUCLRCLR

43、EXLCLREXUCLXCLX3422全距管制圖值管制圖管制圖mRX B计算控制限注:正常情况下,样本n=2此时E2=2.66 D4=3.27 D3=0 E2、D4、D3是用来计算移动极差分组2022-4-24107管制圖mRX C过程控制解释审查移动极差图中超出控制限的点,这是存在特殊原因的信号。记住连续的移动极差间是有联系的,因为它们至少有一点是共同的。由于这个原因,在解释趋势时要特别注意。可用单值图分析超出控制限的点,在控制限内点的分布,以趋势或图形。但是这需要注意,如果过程分布不是对称,用前面所述的用于X图的规则来解释时,可能会给出实际上不存在的特殊原因的信号2022-4-24108估

44、计过程标准偏差:式中,R为移动极差的均值,d2是用于对移动极差分组的随样本容量n而变化的常数。2dR管制圖mRX 2022-4-24109计数型数据控制图引言不合格率p图不合格品数np图不合格数c图单位产品不合格数u图2022-4-24110与过程有关说明人员人员设备设备环境环境材料材料方法方法输出分为:合格:“接受”不合格:“拒收”结果举例控制图车辆不泄漏/泄漏给销售商发的货正确/不正确风窗上玻璃上的气泡发票上的错误不合格率p图不合格品数np图每检验批的不合格品c图每检验批的不合格品数u图2022-4-24111计数型数据控制图应用前提前提是必须明确规定合格准则,并确定这些准则是否满足程序随

45、时间产生一致的结果。验收规范举例评述表面应没有斑点在彩色纹理、光泽度和缺陷数几方面,表面应符合标准为防止剥落而敷到镜子背面的任何材料不应引起镜子背衬有可见的斑点。是什么斑点?检验员是否同意?如何测量?符合哪种程度?如何测量?对谁可见?在什么条件下?2022-4-24112计数型数据控制图益处计数型数据存在于任何技术或行政管理过程中;一般情况下计数型数据已存在,可快捷将数据转化成控制图;收集计数型数据通常不需要专业化收集技术;应用计数型控制图通常能对需要详细检查特定过程提供方向。2022-4-24113P控制图的制做流程A收集数据B计算控制限C过程控制解释D过程能力解释2022-4-24114建

46、立p图的步骤A阶段收集数据A1选择子组的容量、频率及数量子组容量分组频率子组数量A2计算每个子组内的不合格品率A3选择控制图的坐标刻度A4将不合格品率描绘在控制图2022-4-24115A1子组容量、频率、数量子组容量:用于计数型数据的控制图一般要求较大的子组容量(例如50200)以便检验出性能的变化,一般希望每组内能包括几个不合格品,但样本数如果太利也会有不利之处。分组频率:应根据产品的周期确定分组的频率以便帮助分析和纠正发现的问题。时间隔短则反馈快,但也许与大的子组容量的要求矛盾子组数量:要大于等于25组以上,才能判定其稳定性。Ppn512022-4-24116A2计算每个子组内不合格品率

47、记录每个子组内的下列值被检项目的数量n发现的不合格项目的数量np通过这些数据计算不合格品率nnpndp2022-4-24117A3选择控制图的坐标刻度描绘数据点用的图应将不合格品率作为纵坐标,子组识别作为横坐标。纵坐标刻度应从0到初步研究数据读数中最大的不合格率值的1.5到2倍。划图区域2022-4-24118A4将不合格品率描绘在控制图上描绘每个子组的p值,将这些点联成线通常有助于发现异常图形和趋势。当点描完后,粗览一遍看看它们是否合理,如果任意一点比别的高出或低出许多,检查计算是否正确。记录过程的变化或者可能影响过程的异常状况,当这些情况被发现时,将它们记录在控制图的“备注”部份。2022

48、-4-24119计算控制限B1计算过程平均不合格品率B2计算上、下控制限B3画线并标注建立p控制图的步骤B2022-4-24120npppLCLnpppUCLndpCLnnndddnnnpnpnpnppppkkkkk)1(3)1(3. .2121212211中心線计算平均不合格率及控制限2022-4-24121过程控制用控制图解释C1分析数据点,找出不稳定证据C2寻找并纠正特殊原因C3重新计算控制界限超出控制限的点链明显的非随机图形建立p图的步骤C2022-4-24122过程能力解释D1计算过程能力D2评价过程能力D3改进过程能力D4绘制并分析修改后的过程控制图建立p的步骤D2022-4-24

49、123计算过程能力对于p图,过程能力是通过过程平均不合率来表示,当所有点都受控后才计算该值。如需要,还可以用符合规范的比例(1-p)来表示。对于过程能力的初步估计值,应使用历史数据,但应剔除与特殊原因有关的数据点。当正式研究过程能力时,应使用新的数据,最好是25个或更多时期子组,且所有的点都受统计控制。这些连续的受控的时期子组的p值是该过程当前能的更好的估计值。2022-4-24124改善过程能力过程一旦表现出处于统计控制状态,该过程所保持的不合格平均水平即反应了该系统的变差原因过程能力。在操作上诊断特殊原因(控制)变差问题的分析方法不适于诊断影响系统的普通原因变差。必须对系统本身直接采取管理

50、措施,否则过程能力不可能得到改进。有必要使用长期的解决问题的方法来纠正造成长期不合格的原因。可以使用诸如排列图分析法及因果分析图等解决问题技术。但是如果仅使用计数型数据将很难理解问题所在,通常尽可能地追溯变差的可疑原因,并借助计量型数据进行分将有利于问题的解决2022-4-24125改善过程能力过程稳定,不良率维持在一定的水平当中降低不良率采取管理上的措施降低偶因,如此才能缩小控制界限,降低不良率缩小控制限2022-4-24126绘制并分析修改后过程控制图当对过程采取了系统的措施后,其效果应在控制图上明显地反应出来; 控制图成为验证措施有效性的一种途径。对过程进行改变时,应小心地监视控制。这个

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 其他资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁