《第1课时-旋转的概念与性质(教案)(共5页).doc》由会员分享,可在线阅读,更多相关《第1课时-旋转的概念与性质(教案)(共5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第二十三章 旋转23.1图形的旋转第1课时 旋转的概念与性质【知识与技能】通过观察具体实例认识旋转,探索它的基本性质.【过程与方法】在发现、探索的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳,抽象概括的思维能力.【情感态度】学生在实验探究、知识应用等数学活动中,能体验数学的具体、生动、灵活,增强数学应用意识,调动学生学习数学的主动性.【教学重点】归纳图形的旋转特征.【教学难点】旋转概念的形成过程及性质的探究过程.一、情境导入,初步认识问题1 以前我们学过图形的平移、轴对称等变换,它们有哪些特征呢?想想看,并与同
2、伴交流.问题2 请观察下列图形的变化(教师展示实物或图片或用课件展示):(1)时钟针面上时针的转动(顺时针方向旋转和逆时针方向转动);(2)风车的转动;(3)电扇上扇叶的转动;(4)小朋友荡秋千;(5)汽车雨刷的转动;以上图形的转动有什么共同特点呢?你还能举出这样类似的生活中的情境吗?【教学说明】问题1的回顾,可让学生感受到现实生活中存在着平移,轴对称变换,结合问题2,可进一步感受生活中存在着旋转变换,增强探究欲望,进而导入新课.对于问题2,应鼓励学生通过观察、思考、讨论,用自己的语言来描述这个现象的共同特征,初步感受到旋转的基本性质是绕某一固定点转动一定的角度.二、思考探究,获取新知探究1
3、如图,用一根细线一端拴住小球,另一端固定在支架上(教师事先准备好实物),当小球绕点O由A摆动至B,由B摆动至A的过程中,试问:小球绕着哪个点转动?它们转动方向如何?转动的角度是哪个角?探究2 如图,用一根较长细线系住木棒AB的两端,再将细线固定于支架上的点O(教师事先准备好实物),再将木棒提取使之自然摆动至AB位置.试问:在转动过程中,木棒AB绕着哪一点在转动?木棒AB的长度发生了变化吗?A和A到点O的距离发生了变化吗?B和B点呢?由此你能发现哪些重要结论?【教学说明】1.在演示探究2中,应将细线缠绕在支架上点O处,使之不能滑动.2.引导学生认真观察,独立思考过程中,教师可适时予以点拨,从而引
4、出旋转的相关定义,并初步感受旋转的性质,最后师生共同总结.旋转:把一个平面图形绕着平面内某一个点(如点O)旋转一个角度,就叫做图形的旋转.点O称为旋转中心,转动的角度称为旋转角.(注意突出旋转的三个要素:旋转中心、旋转角和旋转方向)对应点:如果图形上的点P经过旋转变为P,则这两个点叫做这个旋转的对应点.对应线段:如果图形上的线段AB经过旋转变为线段AB,则这两条线段称为对应线段,同样地,如果图形上的一个角A经过旋转后变为A,则A和A称为对应角.对应点和旋转中心之间的夹角称为旋转角.【教学说明】给出相关概念过程中,教师可结合图形让学生明确旋转中的对应点、对应角、对应线段、旋转中心等,及时巩固旋转
5、及其相关概念,同时简要说出一些简单的旋转性质,为后面探索旋转的性质作铺垫.探究3 如图,在硬纸片上,挖一个三角形ABC,再挖一个小洞O作为旋转中心,硬纸板下面再放一张白纸,先在纸上描出这个挖掉的三角形(ABC),然后围绕旋转中心O转动硬纸板,再描出这个挖掉的三角形(DEF),移开硬纸板.试问:在旋转的过程中,线段OA与线段OD的大小关系如何?AOD与BOE及COF有什么关系?旋转前后三角形的形状和大小发生了改变吗?【归纳结论】旋转的性质:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后图形的形状、大小完全相同,即它们是全等的.三、运用新知,深化理解1.
6、将图形绕点O旋转,且图形上点P、Q旋转后的对应点分别为P、Q,若POP=80,则QOQ=_,若OQ=2.5cm,则OQ=_。2.从3点到5点,钟表上时针转过的角度为_。3.如图,将四边形AOBC绕点O按逆时针方向旋转45至DOEF位置,在这个旋转过程中:(1)旋转中心是什么?(2)经过旋转,点A、B、C分别移动到什么位置?(3)AO与DO,BO与EO的大小关系如何?(4)若C=30,则图中哪个角的度数也是30?(5)AOD与BOE的度数分别是多少?你能说明理由吗?4.如图,E是正方形ABCD中CD边上任意一点,以A为中心,把ADE顺时针旋转90,画出旋转后的图形.【教学说明】让学生通过随堂演练
7、,加深对知识的理解,教学时,应给予充裕时间让学生自主探究,独立思考,最后师生共同给出答案,让学生自己查漏补缺,完善认知.【答案】1.80;2.5cm2.603.(1)旋转中心是点O;(2)点A、B、C经过旋转后移至D、E、F位置;(3)OA=OD,OB=OE;(4)F=30;(5)AOD=BOE=45,因为它们都等于旋转角.4.因为点A为旋转中心,所以它的对应点是它本身.正方形ABCD中,AB=AD,DAB=90,故旋转后点D与点B重合;又旋转后的图形与ADE全等,故ABE=ADE,BE=DE,即点E的对应点在CB的延长线上,且BE=DE,则ABE为旋转后的图形,图略.四、师生互动,课堂小结通
8、过这节课的学习,你有哪些收获和体会?【教学说明】教师提出问题,让学生自主小结,并交流学习心得体会,加深对本节知识的理解,并反思学习过程中的方法,领会本节的数学思想.1.布置作业:从教材“习题23.1”中选取.2.完成练习册中本课时 练习的“课时 作业”部分.1.积极创设情境,激发学生学习的好奇心和求知欲.以“丰富的生活中的旋转”作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了学生的好奇心和求知欲,接着,让学生说出它们的共同点,再让学生举一些旋转的例子,激发学生主动参与探索新知的兴趣.2.此外,本节课需要注意的地方:(1)教师在提问时需给学生充分思考的时间,帮助学生养成良好的思考、分析习惯.(2)如何将“创设情境”有机地与教学结合起来,更有效地为教学服务.问题情境的创设不能流于形式,而应更多的考虑学生的年龄特征、兴趣爱好,多从学生的角度来设计、创造.专心-专注-专业