《初一数学上册总复习卷子含答案(共25页).doc》由会员分享,可在线阅读,更多相关《初一数学上册总复习卷子含答案(共25页).doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上初一数学上册总复习卷子含答案 一元一次方程方程应用题归类分析列方程解应用题,是初中数学的重要内容之一。许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.1. 和、差、倍、分问题: (1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率”来体现。 (2)多少关系:通过关键词语“多、少、和、差、不足、剩余”来体现。 例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1
2、日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度? 分析:等量关系为: 解:设1990年6月底每10万人中约有x人具有小学文化程度 答:略.2. 等积变形问题: “等积变形”是以形状改变而体积不变为前提。常用等量关系为: 形状面积变了,周长没变; 原料体积成品体积。 例2. 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为 内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数 ) 分析:等量关系为:圆柱形玻璃杯体积长方体铁盒的体积 下降的高度就是倒出水
3、的高度 解:设玻璃杯中的水高下降xmm 答:略. 3. 劳力调配问题: 这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出; (2)只有调入没有调出,调入部分变化,其余不变; (3)只有调出没有调入,调出部分变化,其余不变。 例3. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套? 分析:列表法。 每人每天 人数 数量大齿轮 16个 x人 16x小齿轮 10个 人 等量关系:小齿轮数量的2倍大齿轮数量的3倍 解:设分别安排x名、 名工人加工大、小齿轮
4、答:略. 4. 比例分配问题: 这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。 常用等量关系:各部分之和总量。 例4. 三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几? 解:设一份为x,则三个数分别为x,2x,4x 分析:等量关系:三个数的和是84 答:略. 5. 数字问题 (1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1a9, 0b9, 0c9)则这个三位数表示为:100a+10b+c。(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用
5、2n+2或2n2表示;奇数用2n+1或2n1表示。例5. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系:原两位数+36=对调后新两位数解:设十位上的数字X,则个位上的数是2x,102x+x=(10x+2x)+36解得x=4,2x=8.答:略. 6. 工程问题: 工程问题中的三个量及其关系为:工作总量=工作效率工作时间 经常在题目中未给出工作总量时,设工作总量为单位1。 例6. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程
6、? 分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。 解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(115+112)3+x12=1, 解这个方程,15+14+x12=1 12+15+5x=60 5x=33 x=335=635 答:略. 7. 行程问题: (1)行程问题中的三个基本量及其关系: 路程=速度时间。 (2)基本类型有 相遇问题; 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。 (3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。 例7. 甲、乙两站相
7、距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里? (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。 (1)分析:相遇问题,画图表示为: 等量关系是:慢
8、车走的路程+快车走的路程=480公里。 解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480 解这个方程,230x=390 x=11623答:略.分析:相背而行,画图表示为: 等量关系是:两车所走的路程和+480公里=600公里。 解:设x小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120 x=1223 答:略. (3)分析:等量关系为:快车所走路程慢车所走路程+480公里=600公里。 解:设x小时后两车相距600公里,由题意得,(14090)x+480=600 50x=120 x=2.4 答:略. 分析:追及问题,画图表
9、示为: 等量关系为:快车的路程=慢车走的路程+480公里。 解:设x小时后快车追上慢车。 由题意得,140x=90x+480 解这个方程,50x=480 x=9.6答:略. 分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。解:设快车开出x小时后追上慢车。由题意得,140x=90(x+1)+480 50x=570 解得, x=11.4 答:略. 8. 利润赢亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式: 商品利润=商品售价商品进价=商品标价折扣率商品进价商品利润率=商品利润/商品进价 商品售价=商品标价折扣率例8. 一家商店将某种服装按进价提高4
10、0%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?分析:探究题目中隐含的条件是关键,可直接设出成本为X元进价 折扣率 标价 优惠价 利润x元 8折 (1+40%)x元 80%(1+40%)x 15元等量关系:(利润=折扣后价格进价)折扣后价格进价=15解:设进价为X元,80%X(1+40%)X=15,X=125答:略. 9. 储蓄问题 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税 利息=本金利率期数 本息和=本金+利息 利息税=利息税率(20%)例9. 某同学把250元
11、钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)分析:等量关系:本息和=本金(1+利率)解:设半年期的实际利率为x,250(1+x)=252.7,x=0.0108所以年利率为0.01082=0.0216最佳答案 初一上册数学知识点第一章 有理数1正数、负数、有理数、相反数、科学记数法、近似数2数轴:用数轴来表示数3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小 。5有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加; 绝对值
12、不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值; 互为相反数的两数相加为零; 一个数加上零,仍得这个数。6有理数的减法(把减法转换为加法) 减去一个数,等于加上这个数的相反数。7有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同零相乘,都得零。 乘积是一的两个数互为倒数。8有理数的除法(转换为乘法) 除以一个不为零的数,等于乘这个数的倒数。9有理数的乘方 正数的任何次幂都是正数; 零的任何次幂都是负数; 负数的奇次幂是负数,负数的偶次幂是正数。10混合运算顺序(1) 先乘方,再乘除,最后加减;(2) 同级运算,从左到右进行;(3) 如果有
13、括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。 第二章 整式的加减 1 整式:单项式和多项式的统称; 2整式的加减(1) 合并同类项(2) 去括号第三章 一元一次方程1 一元一次方程的认识2 等式的性质 等式两边加上或减去同一个数或者式子,结果仍然相等; 等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。3 解一元一次方程一般步骤:去分母、去括号、移项、合并同类项、系数化为一第四章 图形认识初步1 几何图形:平面图和立体图2 点、线、面、体3 直线、射线、线段两点确定一条直线;两点之间,线段最短 4 角 角的度量度数 角的比较和运算 补角和余角:等角的补角和余角相等1.有理
14、数:(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数; 不是有理数;(2)有理数的分类: (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a0 a是正数;a0 a是负数;a0 a是正数或0 a是非负数;a 0 a是负数或0 a是非正数.2数轴:数轴是规定了原点、正方向、单位长度的一条直线.3相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;
15、0的相反数还是0;(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 a+b=0 a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或;绝对值的问题经常分类讨论;(3) ;(4) |a|是重要的非负数,即|a|0;注意:|a|b|=|ab|, .5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;
16、(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a0,那么 的倒数是 ;倒数是本身的数是1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b
17、=a+(-b)10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .13有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)
18、n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .14乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a20;若a2+|b|=0 a=0,b=0;(4)据规律 底数的小数点移动一位,平方数的小数点移动二位.15科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,
19、都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减1单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3多项式:几个单项式的和叫多项式.4多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的
20、项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:.6同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7合并同类项法则:系数相加,字母与字母的指数不变.8去(添)括号法则:去(添)括号时,若括号前边是+号,括号里的各项都不变号;若括号前边是-号,括号里的各项都要变号.9整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小
21、到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.一元一次方程1等式与等量:用=号连接而成的式子叫等式.注意:等量就能代入!2等式的性质: 等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3方程:含未知数的等式,叫方程.4方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:方程的解就能代入!5移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6一元一次方程:只含有一个未知数,并且未知数的次
22、数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a0).8一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a0).9一元一次方程解法的一般步骤: 整理方程 去分母 去括号 移项 合并同类项 系数化为1 (检验方程的解).10列一元一次方程解应用题: (1)读题分析法: 多用于和,差,倍,分问题仔细读题,找出表示相等关系的关键字,例如:大,小,多,少,是,共,合,为,完成,增加,减少,配套-,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2
23、)画图分析法: 多用于行程问题利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11列方程解应用题的常用公式:(1)行程问题:距离=速度时间 ;(2)工程问题:工作量=工效工时 ;(3)比率问题:部分=全体比率 ;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价折,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2R,S圆=R2
24、,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=R2h ,V圆锥= R2h.【初一数学知识点】初一数学上册知识点有哪些?来源:本站原创 文章作者:中考网小编 2011-08-03 10:35:37标签:2011小升初后,新一届初一学生将迈入新的学习。语数英仍是初中学习的首要任务。那么,初一数学有哪些知识点?初一数学上册知识点有哪些?初一的上册数学知识点有哪些?初一上册数学应知应会的知识点,中考网整理了一下,供大家参考学习。一、初一数学上册知识点:代数初步知识。1. 代数式:用运算符号“+ - ”连接
25、数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“ ” 乘,或省略不写;(2)数与数相乘,仍应使用“”乘,不用“ ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a 应写成 a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成 的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设
26、两数为a、b时,则应分类,写做a-b和b-a .二、初一数学上册知识点:几个重要的代数式(m、n表示整数)。(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;(4)若b0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .三、初一数学上册知识点:有理数。1.有理数:(1)凡能写成形式的数,都是有理数.正整数、
27、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类: (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)4.绝对值:(1)正数的绝对值是其本身,0
28、的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:绝对值的问题经常分类讨论;(3) (4) |a|是重要的非负数,即|a|0;注意:|a|b|=|ab|, 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.三、初一数学上册知识点: 有理数法则及运算规律。(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号
29、,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.2.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).4.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.5.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .
30、6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .7.有理数乘方的法则:(1)正数的任何次幂都是正数;四、初一数学上册知识点:乘方的定义。(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)(4)据规律底数的小数点移动一位,平方数的小数点移动二位.2.3.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.4.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.5.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计
31、算的最重要的原则.6.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.五、初一数学上册知识点:整式的加减。1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常
32、数)是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.六、初一数学上册知识点:整式分类为。1.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.2.合并同类项法则:系数相加,字母与字母的指数不变.3.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.4.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.5.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意
33、:多项式计算的最后结果一般应该进行升幂(或降幂)排列.七、初一数学上册知识点:一元一次方程1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系
34、数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a0).8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a0).9.一元一次方程解法的一般步骤: 整理方程 去分母 去括号 移项 合并同类项 系数化为1 (检验方程的解).八、初一数学上册知识点:列一元一次方程解应用题。(1)读题分析法: 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程
35、.(2)画图分析法: 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.九、初一数学上册知识点:.列方程解应用题的常用公式。十、结语。初一数学上册知识点有哪些?初一的上册数学知识点有哪些?初一上册数学应知应会的知识点,这些都是学生乃至家长都关心的问题,很多都希望能提前把握。学生对初一的知识点有所掌握,便能轻松自如地应对数学的学习。初一上学期数学单元检测一. 填空:1. 用代数
36、式表示:一本书每天看页,看了5天后,还剩页。这本书一共有 页。2. 如果表示三个连续奇数中的中间一个,则这三个连续奇数分别是 ,它们的和为 。3. 一个正方形的边长为,若把正方形每边减少,则减少后正方形的面积 。4. 当 时,代数式无意义。5. 如果与互为倒数,则 。6. 的相反数是 ,绝对值是 。7. 如果,那么 。8. 若,且,则 。9. 。10. 、三数在数轴上位置如图所示,化简 。二. 选择:1. 用代数式表示、两数和的平方的一半,正确的是( ) A. B. C. D. 2. 六年级学生总数是,其中女生占49%,则男生人数为( ) A. 51% B. 51% C. 49% D. 49%
37、3. 已知关于的方程的解是2,那么的值为( ) A. 4 B. 3 C. 2 D. 14. 在,和中,最大的数和最小的数分别是( )A. 和B. 和C. 和D. 和5. 下列说法中正确的是( )A. 绝对值相等的两个数一定相等B. 不相等的两个数的绝对值不相等C. 绝对值等于它本身的数只有正数D. 互为相反数的两个数的绝对值相等6. 有理数的绝对值等于它倒数的相反数,则( ) A. B. C. D. 以上答案都不对7. 如果,则一定是( ) A. 正数 B. 负数 C. 非正数 D. 08. 如果为有理数,则下列各判断中,正确的是( ) A. 是负数 B. 不是负数 C. 是正数 D. 不是负
38、数9. 化简( ) A. B. 0 C. D. 或010. 使成立的条件是( ) A. 为任何实数 B. C. D. 三. 解答题:1. 解方程:(1)(2)2. 梯形上底是,下底是,高是,面积是S,写出梯形面积的字母公式,如果,S=,求上底。3. 求代数式的值。(1)求代数式的值,其中,。(2)当时,求代数式的值。(3)如果的值是6,求代数式的值。(4)已知,且,求代数式的值。4. 观察下面多边形边数()与对应的内角和(S)的关系,找出规律。 , , , ,S= (1)通过观察计算出当时,S= 。(2)通过对上面图形的观察归纳出边形内角度数和的计算公式S= 。(3)利用公式求出当边数为10时
39、,多边形内角和S= 。5. 列方程解应用题。一条环形公路长42千米,甲、乙两人在公路上骑自行车行进。速度分别为21千米/时和14千米/时。(1)如果两人从公路的同一点同时反向出发,那么经过几小时两人相遇?(2)如果两人从公路的同一点同时同向出发,那么经过几小时两人相遇?【试题答案】一. 填空:1. 2. ,; 3. 4. 5. 2 6. 9;9 7. 8. 9. 10. 二. 选择:1. C 2. B 3. B 4. C 5. D 6. A 7. C 8. B 9. D 10. D三. 解答题:1. (1)解: (2)解: 2. 解: 上底为。3. (1)解: , 当,时 原式 原代数式的值为
40、2(2)解:当时,原式 原代数式的值为28(3)解: 当时 原式 原代数式的值为13(4)解:设,则, 那么 即 则 代数式的值为804. (1)720 (2) (3)14405.(1)解:设经过小时两人相遇 答:经过小时两人相遇。(2)解:设经过小时两人相遇 答:经过6小时两人相遇。2011初一数学上学期期末考试精品复习资料七班级 学号 姓名 成绩一、 选择题 (将答案的题号填写在表格中)(210)题 号12345678910答 案1、下列说法正确的是 (A) 若a表示有理数,则a表示非正数; (B)和为零,商为1的两个数必是互为相反数 (C) 一个数的绝对值必是正数; (D) 若|a|b|
41、,则ab02、两个单项式是同类项,下列说法正确的是 (A) 只有它们的系数可以不同 (B) 只要它们的系数相同 (C) 只要它们的次数相同 (D) 只有它们所含字母相同3、已知等式ykxb,当x1时,y3;当x3时,y2,则k,b的值分别为(A)2.5,0.5 (B) 0.25,2.75 (C) 2.5,0.5 (D) 0.25,2.754、若mn,且|m|n|,那么 (A) m一定是正数 (B) m一定是0 (C) m一定是负数 (D) 这样的m不存在5、要使关于x的方程3(x2) ba(x1)是一元一次方程,必须满足 (A) a0 (B) b0 (C) a3 (D) a,b为任意有理数 6、某工厂去年的产值是a