不定积分解题方法及技巧总结模板(共10页).doc

上传人:飞****2 文档编号:12187813 上传时间:2022-04-24 格式:DOC 页数:10 大小:391KB
返回 下载 相关 举报
不定积分解题方法及技巧总结模板(共10页).doc_第1页
第1页 / 共10页
不定积分解题方法及技巧总结模板(共10页).doc_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《不定积分解题方法及技巧总结模板(共10页).doc》由会员分享,可在线阅读,更多相关《不定积分解题方法及技巧总结模板(共10页).doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上不定积分解题方法总结摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。关键词:不定积分;总结;解题方法不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。1. 利用基本公式。(这就不多说了)2. 第一类换元法。(凑微分)设f()具有原函数F()。则其中可微。用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实

2、在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2:例1:【解】例2:【解】3. 第二类换元法:设是单调、可导的函数,并且具有原函数,则有换元公式第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会用。主要有以下几种: (7)当根号内出现单项式或多项式时一般用代去根号。 但当根号内出现高次幂时可能保留根号,(7)当根号内出现单项式或多项式时一般用代去根号。 但当根号内出现高次幂时可能保留根号,4. 分部积分法.公式:分部积分法采用迂回的技巧,规避难点,挑容易积分的部分先做,最终完成不定积分。具体选取时,通常基于以下两点考虑:(

3、1) 降低多项式部分的系数(2) 简化被积函数的类型举两个例子吧!例3:【解】观察被积函数,选取变换,则例4:【解】上面的例3,降低了多项式系数;例4,简化了被积函数的类型。有时,分部积分会产生循环,最终也可求得不定积分。在中,的选取有下面简单的规律:将以上规律化成一个图就是:(axarcsinx)(lnxPm(x)sinx)但是,当时,是无法求解的。对于(3)情况,有两个通用公式:(分部积分法用处多多在本册杂志的涉及lnx的不定积分中,常可以看到分部积分)5 不定积分中三角函数的处理1.分子分母上下同时加、减、乘、除某三角函数。被积函数上下同乘变形为 令,则为2.只有三角函数时尽量寻找三角函

4、数之间的关系,注意的使用。 三角函数之间都存在着转换关系。被积函数的形式越简单可能题目会越难,适当的使用三角函数之间的转换可以使解题的思路变得清晰。3. 函数的降次形如积分(m,n为非负整数) 当m为奇数时,可令,于是 , 转化为多项式的积分 当n为奇数时,可令,于是 , 同样转化为多项式的积分。 当m,n均为偶数时,可反复利用下列三角公式: 不断降低被积函数的幂次,直至化为前两种情形之一为止。 形如和的积分(n为正整数) 令,则,从而 已转化成有理函数的积分。 类似地,可通过代换转为成有理函数的积分。形如和的积分(n为正整数) 当n为偶数时,若令,则,于是 已转化成多项式的积分。 类似地,可

5、通过代换转化成有理函数的积分。 当n为奇数时,利用分部积分法来求即可。4.当有x与三角函数相乘或除时一般使用分部积分法。5. 几种特殊类型函数的积分。(1) 有理函数的积分有理函数先化为多项式和真分式之和,再把分解为若干个部分分式之和。(对各部分分式的处理可能会比较复杂。出现时,记得用递推公式:)1.有理真分式化为部分分式之和求解简单的有理真分式的拆分 注意分子和分母在形式上的联系 此类题目一般还有另外一种题型: 2.注意分母(分子)有理化的使用例5:【解】故不定积分求得。(2)三角函数有理式的积分万能公式:的积分,但由于计算较烦,应尽量避免。对于只含有tanx(或cotx)的分式,必化成。再

6、用待定系数 来做。(注:没举例题并不代表不重要)(3) 简单无理函数的积分一般用第二类换元法中的那些变换形式。像一些简单的,应灵活运用。如:同时出现时,可令;同时出现时,可令;同时出现时,可令x=sint;同时出现时,可令x=cost等等。 (4)善于利用,因为其求导后不变。 这道题目中首先会注意到,因为其形式比较复杂。但是可以发现其求导后为与分母差,另外因为求导后不变,所以容易想到分子分母同乘以。(5)某些题正的不行倒着来 这道题换元的思路比较奇特,一般我们会直接使用,然而这样的换元方法是解不出本题的。我概括此类题的方法为“正的不行倒着来”,当这类一般的换元法行不通时尝试下。这种思路类似于证明题中的反证法。(6)注意复杂部分求导后的导数注意到:本题把被积函数拆为三部分:,的分子为分母的导数,的值为1,的分子为分母因式分解后的一部分。此类题目出现的次数不多,一般在竞赛中出现。(7)对于型积分,考虑的符号来确定取不同的变换。 如果,设方程两个实根为,令 ,可使上述积分有理化。如果,则方程没有实根,令 ,可使上述积分有理化。此中情况下,还可以设 ,至于采用哪种替换,具体问题具体分析。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁