2018年江苏省盐城市中考数学试题含答案解析(共18页).doc

上传人:飞****2 文档编号:12186151 上传时间:2022-04-24 格式:DOC 页数:18 大小:589KB
返回 下载 相关 举报
2018年江苏省盐城市中考数学试题含答案解析(共18页).doc_第1页
第1页 / 共18页
2018年江苏省盐城市中考数学试题含答案解析(共18页).doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2018年江苏省盐城市中考数学试题含答案解析(共18页).doc》由会员分享,可在线阅读,更多相关《2018年江苏省盐城市中考数学试题含答案解析(共18页).doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上江苏省盐城市2018年中考数学试卷一、选择题1.-2018的相反数是( )A.2018B.-2018C. D.2.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.B.C. D.3.下列运算正确的是( ) A.B.C. D.4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为米,将数据用科学记数法表示为( ) A.B.C. D.5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是( )A.B.C. D.6.一组数据2,4,6,4,8的中位数为( ) A.2B.4C.6 D.87.如图, 为 的直径, 是 的弦, ,则 的度数为(

2、)A.B.C. D.8.已知一元二次方程 有一个根为1,则 的值为( ) A.-2B.2C.-4 D.4二、填空题9.根据如图所示的车票信息,车票的价格为_元10.要使分式 有意义,则 的取值范围是_ 11.分解因式: _ 12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为_13.将一个含有 角的直角三角板摆放在矩形上,如图所示,若 ,则 _14.如图,点 为矩形 的 边的中点,反比例函数 的图象经过点 ,交 边于点 .若 的面积为1,则 _。15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数

3、据:半径 , .则右图的周长为_ (结果保留 )16.如图,在直角 中, , , , 、 分别为边 、 上的两个动点,若要使 是等腰三角形且 是直角三角形,则 _三、解答题17.计算: . 18.解不等式: ,并把它的解集在数轴上表示出来.19.先化简,再求值: ,其中 . 20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦. (1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果; (2)请你计算小悦拿到的两个粽子都是肉馅的概率. 21.在正方形 中,对角线 所在的直线

4、上有两点 、 满足 ,连接 、 、 、 ,如图所示.(1)求证: ; (2)试判断四边形 的形状,并说明理由. 22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:.仅学生自己参与; .家长和学生一起参与;.仅家长自己参与; .家长和学生都未参与.请根据图中提供的信息,解答下列问题: (1)在这次抽样调查中,共调查了_名学生; (2)补全条形统计图,并在扇形统计图中计算 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校20

5、00名学生中“家长和学生都未参与”的人数. 23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件. (1)若降价3元,则平均每天销售数量为_件; (2)当每件商品降价多少元时,该商店每天销售利润为1200元? 24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离 (米)与时间 (分钟)之间的函数关系如图所示.(1)根据图象信息,当 _分钟时甲乙两人相遇,甲的速度为

6、_米/分钟; (2)求出线段 所表示的函数表达式. 25.如图,在以线段 为直径的 上取一点,连接 、 .将 沿 翻折后得到 .(1)试说明点 在 上; (2)在线段 的延长线上取一点 ,使 .求证: 为 的切线;(3)在(2)的条件下,分别延长线段 、 相交于点 ,若 , ,求线段 的长. 26.(1)【发现】如图,已知等边 ,将直角三角形的 角顶点 任意放在 边上(点 不与点 、 重合),使两边分别交线段 、 于点 、 .若 , , ,则 _;求证: ._ (2)【思考】若将图中的三角板的顶点 在 边上移动,保持三角板与 、 的两个交点 、 都存在,连接 ,如图所示.问点 是否存在某一位置

7、,使 平分 且 平分 ?若存在,求出 的值;若不存在,请说明理由. (3)【探索】如图,在等腰 中, ,点 为 边的中点,将三角形透明纸板的一个顶点放在点 处(其中 ),使两条边分别交边 、 于点 、 (点 、 均不与 的顶点重合),连接 .设 ,则 与 的周长之比为_(用含 的表达式表示).27.如图,在平面直角坐标系 中,抛物线 经过点 、 两点,且与 轴交于点 .(1)求抛物线的表达式;(2)如图,用宽为4个单位长度的直尺垂直于 轴,并沿 轴左右平移,直尺的左右两边所在的直线与抛物线相交于 、 两点(点 在点 的左侧),连接 ,在线段 上方抛物线上有一动点 ,连接 、 .()若点 的横坐

8、标为 ,求 面积的最大值,并求此时点 的坐标;()直尺在平移过程中, 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.答案解析部分一、选择题 1.【答案】A 【考点】相反数及有理数的相反数 【解析】【解答】解:-2018的相反数是2018。故答案为A【分析】负数的相反数是它的绝对值;-2018只要去掉负号就是它的相反数2.【答案】D 【考点】轴对称图形,中心对称及中心对称图形 【解析】【解答】解:A、既不是轴对称图形,也不是中心对称图形,故A不符合题意;B、是轴对称图形,但不是中心对称图形,故B不符合题意;C、是轴对称图形,但不是中心对称图形,故C不符合题意;D、是轴对称图形,但

9、不是中心对称图形,故D符合题意;故答案为:D【分析】轴对称图形:沿着一条线折叠能够完全重合的图形;中心对称图形:绕着某一点旋转180能够与自身重合的图形;根据定义逐个判断即可。3.【答案】C 【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,合并同类项法则及应用 【解析】【解答】解:A、 ,故A不符合题意;B、 ,故B不符合题意;C ,故C符合题意;D ,故D不符合题意;故答案为:C【分析】根据合并同类项法则、同底数幂的乘除法则即可。4.【答案】A 【考点】科学记数法表示绝对值较大的数 【解析】【解答】解:=1.46 = 故答案为:A【分析】用科学记数法表示绝对值较大的数,即表示为

10、,其中1|a|10,且n为正整数5.【答案】B 【考点】简单几何体的三视图 【解析】【解答】解:从左面看到的图形是 故答案为:B【分析】在侧投影面上的正投影叫做左视图;观察的方法是:从左面看几何体得到的平面图形。6.【答案】B 【考点】中位数 【解析】【解答】这组数据从小到大排列为:2,4,4,5,8,最中间的数是第3个是4,故答案为:B【分析】中位数是一组数中最中间的一个数(数据是奇数个)或是最中间两个数的平均数(数据是偶数个);这组数据一共有5个,是奇数个,那么把这组数据从小到大排列,第 个数就是中位数。7.【答案】C 【考点】圆周角定理 【解析】【解答】解: ,ADC与B所对的弧相同,B

11、=ADC=35,AB是O的直径,ACB=90,CAB=90-B=55,故答案为:C【分析】由同弧所对的圆周角相等可知B=ADC=35;而由圆周角的推论不难得知ACB=90,则由CAB=90-B即可求得。8.【答案】B 【考点】一元二次方程的根 【解析】【解答】解:把x=1代入方程可得1+k-3=0,解得k=2。故答案为:B【分析】将x=1代入原方程可得关于k的一元一次方程,解之即可得k的值。二、填空题 9.【答案】77.5 【考点】有理数及其分类 【解析】【解答】解:车票上有“¥77.5元”,那么车票的价格是77.5元。故答案为:77.5【分析】根据车票信息中的价格信息可知。10.【答案】2

12、【考点】分式有意义的条件 【解析】【解答】解:要使分式 有意义,即分母x-20,则x2。故答案为: 2【分析】分式有意义的条件是分母不为0:令分母的式子不为0,求出取值范围即可。11.【答案】【考点】因式分解运用公式法 【解析】【解答】解:根据完全平方公式可得 故答案为: 【分析】考查用公式法分解因式;完全平方公式: 12.【答案】【考点】几何概率 【解析】【解答】解:一共有9个小方格,阴影部分的小方格有4个,则P= 故答案为: 【分析】根据概率公式P= ,找出所有结果数n,符合事件的结果数m,代入求值即可。13.【答案】85 【考点】平行线的性质 【解析】【解答】如图,作直线c/a,则a/b

13、/c,3=1=40,5=4=90-3=90-40=50,2=180-5-45=85故答案为:85【分析】过三角形的顶点作直线c/a,根据平行线的性质即可打开思路。14.【答案】4 【考点】反比例函数系数k的几何意义 【解析】【解答】解:点D在反比例函数 的图象上,设点D(a, ),点D是AB的中点,B(2a, ),点E与B的纵坐标相同,且点E在反比例函数 的图象上,点E(2a, )则BD=a,BE= , ,则k=4故答案为:4【分析】由 的面积为1,构造方程的思路,可设点D(a, ),在后面的计算过程中a将被消掉;所以在解反比例函数中的k时设另外的未知数时依然能解出k的值。15.【答案】【考点

14、】弧长的计算 【解析】【解答】解:由第一张图可知弧OA与弧OB的长度和与弧AB的长度相等,则周长为 cm故答案为: 【分析】仔细观察第一张图,可发现单个图的左右两条小弧的长度之和是弧AB的度,则根据弧长公式 即可求得。16.【答案】或 【考点】等腰三角形的判定与性质,相似三角形的判定与性质 【解析】【解答】解:当BPQ是直角三角形时,有两种情况:BPQ=90度,BQP=90度。在直角 中, , , ,则AB=10,AC:BC:AB=3:4:5.( 1 )当BPQ=90度,则BPQBCA,则PQ:BP:BQ=AC:BC:AB=3:4:5,设PQ=3x,则BP=4x,BQ=5x,AQ=AB-BQ=

15、10-5x,此时AQP为钝角,则当APQ是等腰三角形时,只有AQ=PQ,则10-5x=3x,解得x= ,则AQ=10-5x= ;( 2 )当BQP =90度,则BQPBCA,则PQ:BQ:BP=AC:BC:AB=3:4:5,设PQ=3x,则BQ=4x,BP=5x,AQ=AB-BQ=10-4x,此时AQP为直角,则当APQ是等腰三角形时,只有AQ=PQ,则10-4x=3x,解得x= ,则AQ=10-4x= ;故答案为: 或 【分析】要同时使 是等腰三角形且 是直角三角形,要先找突破口,可先确定当APQ是等腰三角形时,再讨论BPQ是直角三角形可能的情况;或者先确定BPQ是直角三角形,再讨论APQ是

16、等腰三角形的情况;此题先确定BPQ是直角三角形容易一些:BPQ是直角三角形有两种情况,根据相似的判定和性质可得到BQP与BCA相似,可得到BQP三边之比,设出未知数表示出三边的长度,再讨论APQ是等腰三角形时,是哪两条相等,构造方程解出未知数即可,最后求出AQ。三、解答题 17.【答案】原式=1-2+2=0 【考点】实数的运算 【解析】【分析】任何非零数的0次幂结果为1;负整数次幂法则: ,n为正整数。18.【答案】解:解: ,去括号得 ,移项得 ,合并同类项得 ,在数轴上表示如图:【考点】在数轴上表示不等式(组)的解集,解一元一次不等式 【解析】【分析】按照解不等式的一般步骤解答即可,并在数

17、轴上表示出解集。19.【答案】原式= = ,当 时,原式= 。 【考点】利用分式运算化简求值 【解析】【分析】根据分式的加减乘除法则计算即可;在做分式乘除法时,分子或分母的因式能分解因式的要分解因式可帮助简便计算。20.【答案】(1)解:如树状图,所有可能的结果是:(肉1 , 肉2),(肉1 , 豆沙),(肉1 , 红枣),(肉2 , 肉1),(肉2 , 豆沙),(肉2 , 红枣),(红枣,肉1),(红枣,肉2),(红枣,豆沙),(豆沙,肉1),(豆沙,肉2),(豆沙,红枣)。(2)解:由(1)可得所有等可能的结果有12种,拿到的两个是肉棕的有2种结果,则P= 。 【考点】列表法与树状图法,概

18、率公式 【解析】【分析】(1)列树状图从开始,列出第一次所有可能拿到的棕子,再列出第二次除第一次拿到的外所有可能拿到的棕子,注意用线连好;列表格:将每次可能拿到的棕子分别写在列或行中,再列举出所有可能,注意不能重复拿同一种的;(2)由(1)可得出所有可能的结果数,再找出其中是两个都是肉的结果数,利用概率公式求得。21.【答案】(1)解:证明:在正方形ABCD中,AB=AD,ABD=ADB=45,则ABE=ADF=135,又BE=DF,ABEADF。(2)解:解:四边形AECF是菱形。理由如下:由(1)得ABEADF,AE=AF。在正方形ABCD中,CB=CD,CBD=CDB=45,则CBE=C

19、DF=135,双BE=DF,CBECDF。CE=CF。BE=BE,CBE=ABE=135,CB=AB,CBEABE。CE=AE,CE=AE=AF=CF,四边形AECF是菱形。 【考点】全等三角形的判定与性质,菱形的判定,正方形的性质 【解析】【分析】(1)由正方形ABCD的性质可得AB=AD,ABD=ADB=45,由等角的补角相等可得ABE=ADF=135,又由已知BE=DF,根据“SAS”可判定全等;(2)由(1)的全等可得AE=AF,则可猜测四边形AECF是菱形;由(1)的思路可证明CBEABE,得到CE=AE;不难证明CBEABE,可得CE=AE,则可根据“四条边相等的四边形是菱形”来判

20、定即可。22.【答案】(1)400(2)解:解:B类家长和学生有:400-80-60-20=240(人),补全如图;C类所对应扇形的圆心角的度数:360 =54。(3)解:解: (人)。答:该校2000名学生中“家长和学生都未参与”有100人。 【考点】扇形统计图,条形统计图 【解析】【解答】解:(1)一共调查家长和学生:8020%=400(人)。【分析】(1)有A类学生的人数除以其所占的百分比即可得到;(2)由(1)求得的总人数,分别减去其他类的人数就是B类的人数;C类所占扇形的圆心角度数:由C类人数和总人数求出C类所占的百分比,而C类在扇形占的部分是就是这个百分比,用它乘以360即可得答案

21、;(3)用“家长和学生都未参与”在调查中的百分比看成占2000人的百分比计算即可。23.【答案】(1)26(2)解:解:设每件商品降价x元时,该商店每天销售利润为1200元,则平均每天销售数量为(20+2x)件,每件盈利为(40-x)元,且40-x25,即x15.根据题意可得(40-x)(20+2x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍去),答:每件商品降价10元时,该商店每天销售利润为1200元。 【考点】一元二次方程的实际应用-销售问题 【解析】【分析】(1)根据等量关系“原销售件数+2降价数=降价后的销售件数”计算;(2)根据等量关系“每件盈利销量=

22、利润”,可设降价x元,则销量根据(1)的等量关系可得为(20+2x)件,而每件盈利为(40-x)元,利润为1200元,代入等量关系解答即可。24.【答案】(1)24;40(2)解:乙的速度:240024-40=60(米/分钟),则乙一共用的时间:240060=40分钟,此时甲、乙两人相距y=40(60+40)-2400=1600(米),则点A(40,1600),又点B(60,2400),设线段AB的表达式为:y=kt+b,则 ,解得 ,则线段AB的表达式为:y=40t(40t60) 【考点】一次函数的实际应用 【解析】【解答】解:(1)当甲、乙两人相遇时,则他们的距离y=0,由图象可得此时t=

23、24分钟;t=60分钟时,y=2400即表示甲到达图书馆,则甲的速度为240024=40(米/分钟).故答案为:24;40【分析】(1)从题目中y关于t的图象出发,t表示时间,y表示甲乙两人的距离,而当y=0时的实际意义就是甲、乙两人相遇,可得此时的时间;当t=0时,y=2400米就表示甲、乙两人都还没出发,表示学校和图书馆相距2400米,由图象可得在A点时乙先到达学校(题中也提到了乙先到止的地),则甲60分钟行完2400米,可求得速度;(2)线段AB是一次函数的图象的一部分,由待定系数法可知要求点A的坐标,即需要求出点A时的时间和甲、乙两人的距离:因为点A是乙到达目的地的位置,所以可先求乙的

24、速度,由开始到相遇,共用了24分钟,甲的速度和一共行驶的路程2400米可求得乙的速度,再求点A位置的时间和距离即可;最后要写上自变量t的取值范围。25.【答案】(1)解:连接OC,OD,由翻折可得OD=OC,OC是O的半径,点D在O上。(2)证明:点D在O上,ADB=90,由翻折可得AC=AD,AB2=ACAE,AB2=ADAE, ,又BAE=DAB,ABEADB,ABE=ADB=90,OB是半径,BE为的O切线。(3)解:设EF=x,AB2=AC2+BC2=ACAE,AE=5,DE=AE-AD=5-4=1,BDF=C=90,BFD=AFC,BDFACF, 即 则BF= ,在RtBDF中,由勾

25、股定理得BD2+DF2=BF2 , 则22+(1+x)2=( )2 , 解得x1= ,x2=-1(舍去),则EF= 【考点】点与圆的位置关系,切线的判定,相似三角形的判定与性质 【解析】【分析】(1)要证明点D在O上,则需要证明点D到圆心的距离OD要等于半径,由折叠易知OD=OC;(2)证明BE为的O切线,由切线判定定理可得需要证明ABE=90;易知ADB=90,由公共角BAE=DAB,则需要ABEADB,由AB2=ACAE和AC=AD可证明;(3)易知BDF=ADB=90,则BDF是一个直角三角形,由勾股定理可得BD2+DF2=BF2 , 而BD=BC=2,DF=DE+EF,EF就是要求的,

26、不妨先设EF=x,看能否求出DE或都BF,求不出的话可用x表示出来,再代入BD2+DF2=BF2解得即可。26.【答案】(1)解:4;证明:EDF=60,B=160CDF+BDE=120,BED+BDE=120,BED=CDF,又B=C, (2)解:解:存在。如图,作DMBE,DGEF,DNCF,垂足分别为M,G,N, 平分 且 平分 ,DM=DG=DN,又B=C=60,BMD=CND=90,BDMCDN,BD=CD,即点D是BC的中点, 。(3)1-cos 【考点】全等三角形的判定与性质,角平分线的性质,等腰三角形的性质,等边三角形的判定与性质,相似三角形的判定与性质 【解析】【解答】(1)

27、ABC是等边三角形,AB=BC=AC=6,B=C=60,AE=4,BE=2,则BE=BD,BDE是等边三角形,BDE=60,又EDF=60,CDF=180-EDF-B=60,则CDF =C=60,CDF是等边三角形,CF=CD=BC-BD=6-2=4。( 3 )连结AO,作OGBE,ODEF,OHCF,垂足分别为G,D,H,则BGO=CHO=90,AB=AC,O是BC的中点B=C,OB=OC,OBGOCH,OG=OH,GB=CH,BOG=COH=90,则GOH=180-(BOG+COH)=2,EOF=B=,则GOH=2EOF=2,由(2)题可猜想应用EF=ED+DF=EG+FH(可通过半角旋转

28、证明),则 =AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,设AB=m,则OB=mcos,GB=mcos2,【分析】(1)先求出BE的长度后发现BE=BD的,又B=60,可知BDE是等边三角形,可得BDE=60,另外EDF=60,可证得CDF是等边三角形,从而CF=CD=BC-BD;证明 ,这个模型可称为“一线三等角相似模型”,根据“AA”判定相似;(2)【思考】由平分线可联系到角平分线的性质“角平分线上的点到角两边的距离相等”,可过D作DMBE,DGEF,DNCF,则DM=DG=DN,从而通过证明BDMCDN可得BD=CD;(3)【探索】由已知不难求得 =2(m+mcos),

29、则需要用m和的三角函数表示出 , =AE+EF+AF;题中直接已知O是BC的中点,应用(2)题的方法和结论,作OGBE,ODEF,OHCF,可得EG=ED,FH=DF,则 =AE+EF+AF= AG+AH=2AG,而AG=AB-OB,从而可求得。27.【答案】(1)解:抛物线 经过点 、 两点, 解得 抛物线 (2)解:(I)点P的横坐标是 ,当x= 时, ,则点P( , ),直尺的宽度为4个单位长度,点Q的横坐标为 +4= ,则当x= 时,y= ,点Q( , ),设直线PQ的表达式为:y=kx+c,由P( , ),Q( , ),可得解得 ,则直线PQ的表达式为:y=-x+ ,如图,过点D作直

30、线DE垂直于x轴,交PQ于点E,设D(m, ),则E(m,-m+ ),则SPQD=SPDE+SQDE= = = = , m 即当m= 时,SPQD=8最大,此时点D( )。(II)设P P(n, ),则Q(n+4, ),即Q(n+4, ),而直线PQ的表达式为:y= ,设D( ),则E(t, )SPQD= =2 =2 = 8当t=n+2时,SPQD=8.PQD面积的最大值为8 【考点】二次函数的最值,待定系数法求二次函数解析式,三角形的面积 【解析】【分析】(1)将两点 、 坐标代入 ,可得方程组,解之即可;( 2 )(I)在遇到几何或代数求最大值,可联系到二次函数求最大值的应用,即将PQD的面积用代数式的形式表示出来,因为它的面积随着点D的位置改变而改变,所以可设点D的坐标为(m, ),过过点D作直线DE垂直于x轴,交PQ于点E,则需要用m表示出点E的坐标,而点E在线段PQ上,求出PQ的坐标及直线PQ的表达式即可解答;(II)可设P(n, ),则Q(n+4, ),作法与(I)一样,表示出PQD的面积,运用二次函数求最值。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁