专题复习线段之和最短问题教案(共7页).doc

上传人:飞****2 文档编号:12084797 上传时间:2022-04-23 格式:DOC 页数:7 大小:72KB
返回 下载 相关 举报
专题复习线段之和最短问题教案(共7页).doc_第1页
第1页 / 共7页
专题复习线段之和最短问题教案(共7页).doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《专题复习线段之和最短问题教案(共7页).doc》由会员分享,可在线阅读,更多相关《专题复习线段之和最短问题教案(共7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上课题: 专题复习线段之和最短问题教案编写:铝城一中 张莹内容分析1、本节内容的地位与作用:学生已复习了初中阶段全部的数学内容,对基础知识有了一定的掌握,本节课在此基础上进一步复习专题线段之和最短问题本节内容主要是运用数形结合和思想,综合轴对称、线段的性质和勾股定理以及一些常见的轴对称图形的性质解决线段之和最短问题,本节课从课本上的一个习题出发,从轴对称入手,利用图形和勾股定理,得出当两个点在对称轴的两侧时以这两个点为端点的线段是最短的,这时两条线段的和最短,使学生了解这一类题的解法,进而引出这个结论在一些常见的轴对称图形中的应用通过本节内容的学习,可使学生掌握求线段之

2、和最短这类问题的解法,提高学生综合运用数学知识的能力2、教学重点:抓住问题本质,求线段之和最短,综合运用有关知识解决问题学法指导:自主学习,小组合作、交流探究3、教学难点:找准本质,求线段之和最短,综合运用有关知识解决问题4、教学关键:运用好数形结合的思想,特别是从轴对称和线段的性质入手,获得求线段之和最短问题的直观形象,以便准确理解本节课的内容。教学目标基于上述对本节课内容的地位与作用的分析,结合学生已有的认知水平,制定本节如下的教学目标:(1)知识与技能目标:通过一个简单的修建奶站的问题,以及它的变式训练,掌握线段之和最短这一类问题的解决方法,并能综合运用轴对称的性质,线段的性质,勾股定理

3、,以及一些常用的轴对称图形的轴对称性,建构数学模型,解决问题(2)过程与方法目标:通过观察、分析、对比等方法,提高学生分析问题、解决问题的能力,进一步强化分类、归纳、综合的思想,发展应用和自主探究意识,并培养学生的综合能力(3)情感与态度目标:通过对问题的解决,了解专题复习的方法,并通过教师指导,享受学习数学的快乐,使学生有成就感,培养学生的合作精神,树立学好数学的信心 教学过程本节课按照“预习展示”“创设情境,引入课题”“合作交流,探求方法”“变式训练,巩固提高”“拓展创新,挑战自我”“课堂小结,感悟反思”“链接中考”的流程展开教学环节教学过程设计意图一、预习展示1、轴对称的性质:_.2、线

4、段的性质:两点之间,_最短.3、勾股定理:_.4、常见的轴对称图形有哪些?这是本节课要用到的一些知识,设计知识的最近发展区,为本节课的内容作好铺垫,分散难点.二、创设情境,引入新课1、如下图,要在街道l上修建一个奶站P,向居民区A,B提供牛奶,问奶站P建在什么地方,才能使从A、B到它的距离之和最短?作出图形并说明理由.数学来源于生活通过学生身边的修建奶站,激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学三、合作交流, 探究方法1、学生先独立思考解题思路和方法,再小组合作,解决疑难,得出解题方法,然后展示成果.2、及时归纳解题方法和思路:小组合作交流,借助学生对问题的解决,唤醒学生

5、对轴对称和线段性质的确认,体验了“发现”知识的快乐,变被动接受为主动探究有助于方法的解决,并且发展学生的观察力与语言表述能力四、变式训练,巩固提高变式一:如图(1),已知正方形ABCD的边长是8,点E在BC边上,且CE=2,点P是对角线BD上的一个动点,求PE+PC的最小值.变式二:如图(2),在菱形ABCD中,AB=2, BAD=60,点E是AB的中点,P是对角线AC上的一个动点,求PE+PB的最小值.变式三:如图(3),AB是O的直径,AB=2,OC是O的半径,OCAB,点D在AC上,AD = 2CD,点P是半径OC上的一个动点,求AP+PD的最小值.变式四:如图(4),正三角形ABC的边

6、长为2,M是BC边上的中点,P是AC边上的一个动点,求PB+PM的最小值.设计变式练习,使学生对求线段之和最短这一类问题的解决方法加以巩固,让学生从运用所学知识解决问题的过程,获得成功的体验,从而激发他们学习的积极性重点考察学生对图形的观察能力及数形结合的能力.四、变式训练,巩固提高变式五:如图(5),一只蚂蚁欲从圆柱形桶外的A点爬到桶内的B点处寻找食物,已知点A到桶口的距离AC为12cm,点B到桶口的距离BD为8cm,CD的长为15cm,那么蚂蚁爬行的最短路程是多少?6、及时总结归纳解这类线段之和最短问题的解题思路和方法,以及用到的数学思想:五拓展创新,挑战自我问题:如下图,A为马厩,B为帐

7、篷,牧马人某天要从马厩牵出马,先到草地边的某一处牧马,再到河边饮水,然后回到帐篷,请你帮他确定这一天的最短路线.作出图形并说明理由.前面变式练习之后,通过生活实例的解决,让学生感受数学和生活的联系及数学在生活中的重要性,充分体现数学来源于生活又还原于生活让学生多角度、全方位发挥其思维的深度和广度 六课堂小结,感悟反思学生自主小结,交流在本课学习中的体会、收获,交流学习过程中体验与感受,以及可能存在的困惑,师生合作共同完成课堂小结(辅以几何画板动画来演示,加深学生对线段之和最短这类问题的理解)在此活动中,教师应重点关注:(1)不同学生总结知识的程度和能力; (2)对练习中反馈的信息及时处理七布置

8、作业,直击中考六、链接中考:(作为这节课的作业)1、(陕西省2009,16题,3分)如下图,在锐角ABC中,AB=,BAC=45,BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是_.2、(淄博市2007模拟试题,17,4分)如下图,菱形ABCD中,AB=2, BAD=60,点E、F、P分别是AB、BC、AC上的动点,则PE+PF的最小值为_. 发挥本节课内容的扩张作用,培养学生的发散思维能力和对数学的兴趣同时让学生接近中考,提高综合能力.七布置作业,直击中考3、(济南2009,24题,9分)已知:抛物线y=ax2+bx+c(a0)的对称轴为x=-1,与x轴交于

9、A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2).(1)求这条抛物线的函数表达式;(2)已知在对称轴上存在一点P,使得PBC的周长最小,请求出点P的坐标.(3)若点D是线段OC上的一个动点(不与点O,C重合),过点D作DE/PC交x轴于点E,连接PD,PE,设CD的长为m, PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由。4、(威海市2009,24,11分)如图,在直角坐标系中,A,B,C的坐标分别为(-1,0),(3,0),(0,3),过A,B,C三点的抛物线的对称轴为直线l,D为直线l上的一个动点,(1)求抛物线的解析式;(2)求当AD+CD最小时点D的坐标;(3)以点A为圆心,以AD为半径作圆A;证明:当AD+CD最小时,直线BD与圆A相切;写出直线BD与圆A相切时,点D的另一个坐标。发挥本节课内容的扩张作用,培养学生的发散思维能力和对数学的兴趣同时让学生接近中考,提高综合能力.八板书设计专题复习线段之和最短问题1、 方法总结:2、 学生展示:专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁