《椭圆的标准方程的推导方法(共4页).doc》由会员分享,可在线阅读,更多相关《椭圆的标准方程的推导方法(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上椭圆的标准方程的推导方法1、回顾用坐标法求动点轨迹方程的一般步骤:建系设点、写出动点满足的几何约束条件、坐标化、化简、证明等价性2、建立焦点在轴上的椭圆的标准方程建系设点:观察椭圆的几何特征,如何建系能使方程更简洁?利用椭圆的对称性特征以直线为轴,以线段的垂直平分线为轴,建立平面直角坐标系设焦距为,则设为椭圆上任意一点,点与点的距离之和为动点满足的几何约束条件: 坐标化:化简:化简椭圆方程是本节课的难点,突破难点的方法是引导学生思考如何去根号预案一:移项后两次平方法分析的几何含义,令得到焦点在轴上的椭圆的标准方程为预案二:用等差数列法:设 得4cx=4at,即t=将t
2、=代入式得 将式两边平方得出结论。以下同预案一预案三:三角换元法:设得即即 代入式得以下同预案一设计意图:进一步熟悉用坐标法求动点轨迹方程的方法,掌握化简含根号等式的方法,提高运算能力,养成不怕困难的钻研精神,感受数学的简洁美、对称美(3)建立焦点在轴上的椭圆的标准方程要建立焦点在轴上的椭圆的标准方程,又不想重复上述繁琐的化简过程,如何去做?此时要借助于化归思想,抓住图(1)与图(2)的联系即可化未知为已知,将已知的焦点在轴上的椭圆的标准方程转化为焦点在轴上的椭圆的标准方程只需将图(1)沿直线翻折或将图(1)绕着原点按逆时针方向旋转即可转化成图(2),需将轴、轴的名称换为轴、轴或轴、轴 (1) (2)焦点在轴上的椭圆的标准方程为设计意图:体会数学中的化归思想,化未知为已知,避免重复劳动(4)辨析焦点分别在轴、轴上的椭圆的标准方程的异同点区别:要判断焦点在哪个轴上,只需比较与项分母的大小即可若项分母大,则焦点在轴上;若项分母大,则焦点在轴上反之亦然联系:它们都是二元二次方程,共同形式为 两种情况中都有专心-专注-专业