定积分在几何学上的应用(共12页).doc

上传人:飞****2 文档编号:12033250 上传时间:2022-04-23 格式:DOC 页数:12 大小:602.50KB
返回 下载 相关 举报
定积分在几何学上的应用(共12页).doc_第1页
第1页 / 共12页
定积分在几何学上的应用(共12页).doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《定积分在几何学上的应用(共12页).doc》由会员分享,可在线阅读,更多相关《定积分在几何学上的应用(共12页).doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上第五章 第五节 定积分在几何学上的应用教学目的:掌握用元素法计算平面图形的面积、计算体积、计算平面曲线的弧长、计算平面曲线的弧长。教学重点:直角坐标系下平面图形的面积计算,体积的计算,平面曲线弧长的计算、平面曲线弧长的计算。 教学难点:面积元素的选取、体积元素的选取、弧长元素的选取教学内容:一、定积分的元素法1、能用定积分计算的量,应满足下列三个条件(1)、与变量的变化区间有关;(2)、对于区间具有可加性;(3)、部分量可近似地表示成。2、写出计算的定积分表达式步骤(1)、根据问题,选取一个变量为积分变量,并确定它的变化区间;(2)、设想将区间分成若干小区间,取其中的

2、任一小区间,求出它所对应的部分量的近似值 ( 为上一连续函数)则称为量的元素,且记作。(3)、以的元素作被积表达式,以为积分区间,得这个方法叫做元素法,其实质是找出的元素的微分表达式因此,也称此法为微元法。二、平面图形面积的计算 1直角坐标的情形由曲线 及直线 与 ( ) 与 轴所围成的曲边梯形面积。 其中:为面积元素。由曲线 与 及直线 ,( )且所围成的图形面积。 其中: 为面积元素。例1 计算抛物线与直线所围成的图形面积。解:1、先画所围的图形简图解方程 , 得交点: 和 。2、选择积分变量并定区间选取为积分变量,则3、给出面积元素在上, 在上, 4、列定积分表达式另解:若选取为积分变量

3、,则 显然,解法二较简洁,这表明积分变量的选取有个合理性的问题。例2 求椭圆所围成的面积 。解:据椭圆图形的对称性,整个椭圆面积应为位于第一象限内面积的4倍。取为积分变量,则 , 故 ( * )作变量替换 则 , ( * * )2极坐标情形设平面图形是由曲线 及射线,所围成的曲边扇形。取极角为积分变量,则 ,在平面图形中任意截取一典型的面积元素,它是极角变化区间为的窄曲边扇形。的面积可近似地用半径为, 中心角为的窄圆边扇形的面积来代替,即从而得到了曲边梯形的面积元素 从而 例3 计算心脏线所围成的图形面积。解: 由于心脏线关于极轴对称, 二、体积1旋转体的体积旋转体是由一个平面图形绕该平面内一

4、条定直线旋转一周而生成的立体,该定直线称为旋转轴。计算由曲线直线,及轴所围成的曲边梯形,绕轴旋转一周而生成的立体的体积。取为积分变量,则,对于区间上的任一区间,它所对应的窄曲边梯形绕轴旋转而生成的薄片似的立体的体积近似等于以为底半径,为高的圆柱体体积。即:体积元素为所求的旋转体的体积为例4 求由曲线及直线,和轴所围成的三角形绕轴旋转而生成的立体的体积。解:取为积分变量,则2平行截面面积为已知的立体的体积( 截面法 )由旋转体体积的计算过程可以发现:如果知道该立体上垂直于一定轴的各个截面的面积,那么这个立体的体积也可以用定积分来计算。取定轴为轴, 且设该立体在过点,且垂直于轴的两个平面之内, 以

5、表示过点且垂直于轴的截面面积。取为积分变量,它的变化区间为。立体中相应于上任一小区间的一薄片的体积近似于底面积为,高为的扁圆柱体的体积。即:体积元素为 于是,该立体的体积为 例5 计算椭圆 所围成的图形绕轴旋转而成的立体体积。解:这个旋转体可看作是由上半个椭圆及轴所围成的图形绕轴旋转所生成的立体。在处,用垂直于轴的平面去截立体所得截面积为例6 计算摆线的一拱以及所围成的平面图形绕轴旋转而生成的立体的体积。解:请自行计算定积分 三、平面曲线的弧长1直角坐标情形设函数在区间上具有一阶连续的导数,计算曲线的长度。取为积分变量,则,在上任取一小区间,那么这一小区间所对应的曲线弧段的长度可以用它的弧微分

6、来近似。于是,弧长元素为弧长为例8 计算曲线的弧长。解:2参数方程的情形若曲线由参数方程给出,计算它的弧长时,只需要将弧微分写成的形式,从而有例9 计算半径为的圆周长度。解: 圆的参数方程为 3极坐标情形若曲线由极坐标方程给出,要导出它的弧长计算公式,只需要将极坐标方程化成参数方程,再利用参数方程下的弧长计算公式即可。曲线的参数方程为此时变成了参数,且弧长元素为从而有例10 计算心脏线的弧长。 解: 小结:求在直角坐标系下、极坐标系下平面图形的面积、旋转体体积平行截面已知的立体的体积平面曲线弧长的概念,弧微分的概念求弧长的公式 直角坐标系下 参数方程 极坐标系下作业:P154 1,2,4,6,8,10,12,13。 专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁