《2022圆周角的概念和圆周角定理.docx》由会员分享,可在线阅读,更多相关《2022圆周角的概念和圆周角定理.docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022圆周角的概念和圆周角定理篇一:第1课时 圆周角的概念和圆周角定理 24.1.4 圆周角(2课时) 第1课时 圆周角的概念和圆周角定理 1理解圆周角的概念,会识别圆周角 2掌握圆周角定理,并会用此定理进行简单的论证和计算 重点 圆周角的概念和圆周角定理 难点 用分类讨论的思想证明圆周角定理,尤其是分类标准的确定 活动1 复习类比,引入概念 1用几何画板显示圆心角 2教师将圆心角的顶点进行移动,如图 1. (1)当角的顶点在圆心时,我们知道这样的角叫圆心角,如AOB. (2)当角的顶点运动到圆周时,如ACB这样的角叫什么角呢? 学生会马上猜出:圆周角教师给予鼓励,引出课题 3总结圆周角概念
2、 (1)鼓励学生尝试自己给圆周角下定义估计学生能类比圆心角给圆周角下定义,顶点在圆周上的角叫圆周角,可能对角的两边没有要求 (2)教师提问:是不是顶点在圆周上的角就是圆周角呢?带着问题,教师出示下图 学生通过观察,会发现形成圆周角必须具备两个条件:顶点在圆周上;角的两边都与圆相交最后让学生再给圆周角下一个准确的定义:顶点在圆周上,两边都与圆相交的角叫圆周角 (3)比较概念:圆心角定义中为什么没有提到“两边都与圆相交”呢? 学生讨论后得出:凡是顶点在圆心的角,两边一定与圆相交,而顶点在圆周上的角则不然,因此,学习圆周角的概念,一定要注意角的两边“都与圆相交”这一条件 活动2 观察猜想,寻找规律
3、1教师出示同一条弧所对圆周角为90,圆心角为180和同一条弧所对圆周角为45,圆心角为90的特殊情况的图形 提出问题:在这两个图形中,对着同一条弧的圆周角和圆心角,它们之间有什么数量关系由于情况特殊,学生观察、测量后,容易得出:对着同一条弧的圆周角是圆心角的一半 2教师提出:在一般情况下,对着同一条弧的圆周角还是圆心角的一半吗?通过上面的特例,学生猜想,得出命题:一条弧所对的圆周角等于它所对的圆心角的一半 活动3 动手画图,证明定理 1猜想是否正确,还有待证明教师引导学生结合命题,画出图形,写出已知、求证 2先分小组交流画出的图形,议一议:所画图形是否相同?所画图形是否合理? 3利用实物投影在
4、全班交流,得到三种情况若三种位置关系未出现全,教师利用电脑演示同一条弧所对圆周角的顶点在圆周上运动的过程,得出同一条弧所对的圆心角和圆周角之间可能出现的不同位置关系,得到圆心角的顶点在圆周角的一边上、内部、外部三种情况 4引导学生选一种最特殊、最容易证明的“圆心角的顶点在圆周角的一边上”进行证明,写出证明过程,教师点评 5引导学生通过添加辅助线,把“圆心角的顶点在圆周角的内部、外部”转化成“圆心角的顶点在圆周角的一边上”的情形,进行证明,若学生不能构造过圆周角和圆心角顶点的直径,教师给予提示然后小组交流讨论,上台展示证明过程,教师点评证明过程 6将“命题”改为“定理”,即“圆周角定理” 活动4
5、 达标检测,反馈新知 1教材第88页 练习第1题 2如图,BAC和BOC分别是O中的弧BC所对的圆周角和圆心角,若BAC60,那么BOC _. 3如图,AB,AC为O的两条弦,延长CA到D,使ADAB,如果ADB30,那么BOC _. 答案:1.略;2.120;3.120. 活动5 课堂小结,作业布置 课堂小结 1圆周角概念及定理 2类比从一般到特殊的数学方法及分类讨论、转化与化归的数学思想 作业布置 教材第88页 练习第4题,教材第89页 习题第5题 第2课时 圆周角定理推论和圆内接多边形 1能推导和理解圆周角定理的两个推论,并能利用这两个推论解决相关的计算和证明 2知道圆内接多边形和多边形
6、外接圆的概念,明确不是所有多边形都有外接圆 3能证明圆内接四边形的性质,并能应用这个性质解决简单的计算和证明等问题 重点 圆周角定理的两个推论和圆内接四边形的性质的运用 难点 圆内接四边形性质定理的准确、灵活应用以及如何添加辅助线 活动1 温习旧知 1圆周角定理的内容是什么? 2如图,若BC的度数为101,则BOC_,A _. 3如图,四边形ABCD中,B与1互补,AD的延长线与DC所夹的260,则1_,B _. 4判断正误: (1)圆心角的度数等于它所对的弧的度数;( ) (2)圆周角的度数等于它所对的弧的度数的一半( ) 答案:1.略;2.101,50;3.120,60;4.略 活动2 探
7、索圆周角定理的“推论” 1请同学们在练习本上画一个O.想一想,以A,C为端点的弧所对的圆周角有多少个?试着画几个然后教师引导学生:观察下图,ABC,ADC,AEC的大小关系如何?为什么? 让学生得出结论后,教师继续追问:如果把这个结论中的“同弧”改为“等弧”,结论正确吗? 2教师引导学生观察下图,BC是O的直径请问:BC所对的圆周角BAC是锐角、直角还是钝角? 让学生交流、讨论,得出结论:BAC是直角教师追问理由 3如图,若圆周角BAC90,那么它所对的弦BC经过圆心吗?为什么?由此能得出什么结论? 4师生共同解决教材第87页例4. 活动3 探索圆内接四边形的性质 1教师给学生介绍以下基本概念
8、: 圆内接多边形与多边形的外接圆;圆内接四边形与四边形的外接圆 2要求学生画一画,想一想: 在O上任作它的一个内接四边形ABCD,A是圆周角吗?B,C,D呢?进一步思考,圆内接四边形的四个角之间有什么关系? 3先打开几何画板,验证学生的猜想,然后再引导学生证明,最后得出结论:圆内接四边形对角互补 4课件展示练习: (1)如图,四边形ABCD内接于O,则AC_,BADC_;若B80,则ADC_,CDE_; (2)如图,四边形ABCD内接于O,AOC101,则D_,B_; (3)四边形ABCD内接于O,AC13,则A_; (4)如图,梯形ABCD内接于O,ADBC,B75,则C_. (5)想一想对
9、于圆的任意内接四边形都有这样的关系吗? 答案:(1)180,180,101,80;(2)130,50;(3)45;(4)75;(5)都有 活动4 巩固练习 1教材第88页 练习第5题 2圆的内接梯形一定是_梯形 3若ABCD为圆内接四边形,则下列哪个选项可能成立( ) AABCD1234 BABCD2134 CABCD3214 DABCD4321 答案:1.略;2.等腰;3.B. 活动5 课堂小结与作业布置 课堂小结 本节课我们学习了圆周角定理的两个推论和圆内接四边形的重要性质,要求同学们理解圆内接四边形和四边形的外接圆的概念,理解圆内接四边形的性质定理;并初步应用性质定理进行有关问题的证明和
10、计算 作业布置 教材第8991页 习题第5,6,13,14,17题 篇二:圆周角的概念和圆周角定理 24.1.4圆周角的概念和圆周角定理(第一课时)学案 篇三:圆周角的概念和圆周角定理导学案 24.1.4圆周角的概念和圆周角定理(第三课时) 一、展示教学目标 1.理解圆周角、圆内角、圆外角概念,掌握圆周角和圆心角的关系定理 2.在定理的证明过程中,了解化归思想和分类思想和完全归纳的思想。 3.培养学生分析问题和解决问题及综合运用知识的能力 二、阅读教材P85-P86,并完成以下预习提纲 1、圆心角与所对的弧的关系: 2、圆周角与所对的弧的关系: 3、同弧所对的圆心角与圆周角的关系: 圆周角定理
11、:一条弧所对的圆周角等于的一半. 4、101o的弧所对的圆心角等于_,所对的圆周角等于_。 5、一弦分圆周角成两部分,其中一部分是另一部分的4倍,则这弦所对的圆周角 度数为_。 6、在O中,BAC=32o,则BOC=_。 7、O中,ACB = 130o,则AOB=_。 8、下列命题中是真命题的是() (A)顶点在圆周上的角叫做圆周角。 (B)60o的圆周角所对的弧的度数是30o (C)一弧所对的圆周角等于它所对的圆心角。(D)120o的弧所对的圆周角是60o 9、在同圆中,一条弧所对的圆心角有几个?圆周有几个?画图表示。 三、小组讨论并展示预习成果 四、教师点拨释疑 1.同圆或等圆中,同弧或等
12、弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 2.半圆(或直径)所对的圆周角是直角,直角所对对的弦是直径。 3.圆内接四边形的对角互补。 五、课堂测试 1.已知:四边形ABCD内接于圆,BD平分ABC,且AB CD . 求证:CD=CB 2如图,已知AB=AC,APC=60 (1)求证:ABC是等边三角形 (2)若BC=4cm,求O的面积 3.课本第88页11、14题,课本第122页11题, 选作题:一个圆形人工湖,弦AB是湖上的一座桥,已知桥AB长101m. 测得圆周角ACB=45求这个人工湖的直径. 4、如图,已知在O中,直径AB为10厘米,弦AC为6厘米,ACB的平分线交O于D;求BC,AD和BD的长. 六、小结:你在这一节课中的收获是 七、作业 :课本88(2、3、4、10、11) 圆周角的概念和圆周角定理出自:百味书屋链接地址: 转载请保留,谢谢!本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第11页 共11页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页