《2022飞机的引导员,地面上的领航者.docx》由会员分享,可在线阅读,更多相关《2022飞机的引导员,地面上的领航者.docx(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022飞机的引导员,地面上的领航者 飞机的引导员,地面上的领航者飞机在天上航行,怎样才能不迷失方向呢?原来方向的引导全靠一位地面的领航员引导雷达指挥。星际旅行引导雷达能自动地替人们完成一系列困难的测量和计算工作,精确地测定飞机在天空中的位置,不断地引导飞机精确到达指定地点,执行各种战斗任务。现在的飞机大多是超音速的,飞行速度极快,若不是这位地面的“引导员”,飞机很难独自完成任务。引导雷达一般工作的波长为几十厘米到十厘米左右的微波波段,只能精确地测定目标的方位和距离,不能测出目标的高度,因此须要测高雷达和引导雷达相协作,才能精确测出敌机的方位、距离以及高度,进而推算出它的航向、航速,快速地引导
2、我机迎击空中来犯之敌。引导雷达的最大特点是测得准。因为假如雷达测方位误差1的话,对距离在200公里处的目标来说,意味着目标位置偏差了3.5公里。若再加上高度和距离上的探测误差,就可能使飞行员根本无法找到敌机而失去战机。因此,引导雷达对飞机引导是否精确,往往对空战的成功有着极大影响。望远镜倍数扩展阅读:飞机导航系统飞机导航系统aircraftnavigationsystem确定飞机的位置并引导飞机按预定航线飞行的整套设备(包括飞机上的和地面上的设备)。发展概况早期的飞机主要靠目视导航。20世纪20年头起先发展仪表导航。飞机上有了简洁的仪表,靠人工计算得出飞机当时的位置。30年头出现无线电导航,首
3、先运用的是中波四航道无线电信标和无线电罗盘。40年头初起先研制超短波的伏尔导航系统和仪表着陆系统(见无线电限制着陆)。50年头初惯性导航系统用于飞机导航。50年头末出现多普勒导航系统。60年头起先运用远程无线电罗兰C导航系统,作用距离达到201*公里。为满意军事上的须要还研制出塔康导航系统,后又出现伏尔塔克导航系统及超远程的奥米加导航系统,作用距离已达到10000公里。1963年出现卫星导航,70年头以后发展全球定位导航系统。导航方法导航的关键在于确定飞机的瞬时位置。确定飞机位置有目视定位、航位推算和几何定位三种方法。目视定位是由驾驶员视察地面标记来判定飞机位置;航位推算是依据已知的前一时刻的
4、位置和测得的导航参数来推算当前飞机的位置;几何定位是以某些位置完全确定的导航点为基准,测量出飞机相对于这些导航点的几何关系,最终定出飞机的肯定位置。飞机导航系统按工作原理可以分为:仪表导航系统。利用飞机上的仪表所供应的数据计算出飞机的各种导航参数。无线电导航系统。利用地面无线电导航台或空间的导航卫星和飞机上的无线电导航设备对飞机进行定位和引导。惯性导航系统。利用安装在惯性平台上的3个加速度计的测量结果连续地给出飞机的空间位置和速度。假如把加速度计干脆装在飞机机体上,并与航向系统和姿态系统结合起来进行导航便构成捷联式惯性导航系统。天文导航系统。以天体为基准,利用星体跟踪器测得星体高度角来确定飞机
5、的位置。组合导航系统。将以上几种导航系统组合构成的性能更为完善的导航系统。早期的领航概念中是没有定位一说的,飞行员或者领航员只是通过视察马路、铁路、河流、山峰、城镇或湖泊等地标来确定飞机的方位。单纯的NDB或VOR也只是飞机定向的一种手段。直到80年头DME加盟无线电导航后,才使定向向定位前进了一步。现在以GPS为代表的卫星导航系统是被广泛应用的精确定位的一种主要导航方式。导航种类主要分惯性导航和无线电导航两种。惯性导航是指安装在飞机上的惯性基准系统(IRS)。它主要由3个加速计和3个陀螺仪构成。加速计用于测量飞机的3个平移运动加速度,指示当地地垂线的方向;陀螺仪用于测量飞机的3个转动运动的角
6、位移,指示地球自转轴的方向。计算机对测出的加速度进行两次积分,计算出飞机的位置。以A320飞机为例,它有3部惯性基准系统,就供应了3个惯性基准系统的位置给飞行管理计算机(FMC),飞行管理计算机则依据这3个位置再计算出一加权平均值,我们称之为“混合惯导”(MIXIRS)位置。无线电导航是指通过测定无线电波从放射台到接收台的传播时间或相位和相角来进行定向定位的。地面雷达定位也是无线电导航的一种方式。现在一般将无线电导航分为陆基导航和星基导航两种。陆基导航依靠的是台站与台站之间的相对位置,由一个台站到另一个台站。譬如由NDB到NDB或由VOR到VOR或NDB与VOR之间。星基导航依靠的是一系列航路
7、点的精确位置,它的主要特征是任一点的坐标化。它所运用的导航设施有:DME-DME、VOR-DME、GPS、GLONASS等。举个简洁例子:回上海由东山(KN)到嵊县(JF)到庵东(AND)一段,我们现在的飞行安排中所运用的只是这几个点的地理位置坐标,而不是它们的频率,所以我们认为这是星基导航的方式。但假如GPS不行用或飞行管理计算机部分存在问题,我们就须要运用这些航路导航设施的详细频率,向台或者背台飞行,从而达到进场的目的,这时候我们所运用的就是陆基导航的方式,也就是传统的无线电导航模式。由此可见,不是说运用陆地上的导航设备就是陆基导航,也不是说星基导航是仅仅运用GNSS(全球卫星导航系统)。
8、在区域导航的现阶段,还是脱离不了这些航路导航设施的,或许在将来的新航行系统中会完全抛弃现有的航路导航设施,实行点与点之间的干脆对话。我们通常所说的无线电位置,是指机载接收机向飞行管理计算机传送接收到的信号,通过测距定位(DME-DME)或测距测向定位(DME-VOR),来确定的位置。其工作原理是:飞机起飞后,与飞行管理计算机有关的机载无线电导航系统起先工作,对两个地理位置最好的DME台(两个台与飞机连线之间的夹角大于30度小于150度)进行自动调谐,计算出距离后与导航数据库里的各台经纬度以及从其它渠道得到的飞行高度等其它信息相结合,计算出飞机的无线电位置。当DME接收机无法接收到两个符合条件的
9、地面DME台信号时,机载无线电导航系统就会选择同一位置的DME/VOR。在盲降进近期间,用LOC(航向信标)更新运用LOC波束的横向位置(DME/DME-LOC或VOR/DME-LOC)。全球卫星导航系统(GNSS)是星基导航系统的核心。它主要包括美国国防部驾驭的GPS和前苏联从80年头起先建设现在由俄罗斯空间局管理的GLONASS,以及由西欧欧洲空间局正在建设的NAVSAT系统。GPS是目前应用最广泛的卫星导航系统,但在航空应用方面却受到了技术和政策的干扰,在纯民用的NAVSAT系统投入运用前,用户还没有自主选择的空间,所以运用的还是INS/GPS这种组合,这也是现在我们最主要和最常用的导航
10、方式。所以我们平常所说的GPS位置,对飞机而言,其实就是GPIRS,即INS/GPS的混合位置。每一部惯性基准系统都有一个和GPS的混合位置,飞行管理计算机依据其品质等级数及优选性选择其中的一个。综上所述可知,单纯的NDB和VOR是不能定位的,那么惯导位置、无线电位置和GPIRS位置哪个才是代表飞机的位置呢?FMC(本文不涉及FMC对飞机其它系统供应其它类型数据的作用,单独考虑其在坐标和位置方面的计算)考虑每个定位设备的精确性和完整性而选择最精确的位置,从这个意义上来说,飞机的位置,就是FM的位置。假如GPS数据有效并且测试合格,那么GPS/INERTIAL为基本的导航方式。否则的话,运用无线
11、电导航台加惯导或仅用惯导。即FMGS(飞行管理引导系统,以A320为例,它包括2个飞行管理引导计算机FMGC、2个多功能限制显示组件MCDU、1个飞行限制组件FCU和2个飞行增稳计算机FAC)运用GPS或当GPS不工作时运用无线电导航台更新FM位置。优先依次为:IRS-GPS、IRS-DME/DME、IRS-VOR/DME、仅用IRS。飞行初始化时,每部FMGC(飞行管理引导计算机,我们通常讲的FMC是指它的管理部分而没有提及其引导部分)显示一FM位置,这个位置是一个GPIRS;起飞时,FM位置更新为储存在数据库里的跑道入口位置;飞行中,FM位置向无线电位置或GPS位置接近,其接近率取决于飞机
12、高度。FMGC始终在计算从混合惯导位置到无线电位置或GPS位置的矢量偏差。假如无线电位置或GPS位置可用,每部FMGC不断更新这个偏差。所以飞机的位置不是单纯的惯导位置或无线电位置或GPS位置,这和飞机的导航方式以及飞机所处的不同阶段是相关的。当然,全部的位置都是针对WGS-84坐标系而言的,在内地运用北京54坐标系时,由于GPS运用的也是WGS-84坐标系,可能还会有所偏差,在这里就不额外表述了。导航靠无线电导航和自主式导航。无线电导航包括:VOR/DME导航(须要VOR/DME地面信标台)、GPS导航、ADF自动定向机(就是楼上说的NDB导航台)、仪表着陆系统ILS。自主式主要是惯性基准系
13、统。地面监视雷达那是地面空管用的,不是飞机的导航系统。地面监视雷达包括一次雷达和二次雷达,和飞机上的ATC应答机组成ATCRBS或DABS。二次雷达是以询问-应答方式工作的,能给空中交通管制员供应飞机识别码和高度信息。但并不供应速度信息!而飞机上的TCAS防撞系统只计算对方垂直速度,并不显示对方速度。一个飞机场都有人么部分组成飞机场通讯导航设施飞机场所需的各项通讯、导航设施的统称。航空通讯有陆空通讯和平面通讯。陆空通讯飞机场空中交通管制部门和飞机之间的无线电通讯。主要方式是用无线电话;远距离则用无线电报。飞机场无线电通讯设施在城市划定的发讯区修建无线电发讯台,收讯区修建无线电收讯台。无线电中心
14、收发室则建在飞机场航管楼内。发讯台和收讯台、收发室,以及和城市之间都要根据放射机放射功率的大小和数量,保持肯定的距离。功率愈大,距离要愈远。收、发讯台的天线场地以及邻近地区应为平坦地形,易于解除地面水,收讯台址还应特殊留意远离各种可能对无线电电波产生二次辐射的物体(如高压架空线和高大建筑物等)和干扰源(如发电厂、有电焊和高频设备的工厂、矿山等)。20世纪80年头,载波通讯和微波通讯发达的区域,平面通讯一般不再利用短波无线电通讯设备。无线电发讯台主要安装对飞机通讯用的放射设备;也不再单建无线电收讯台,而将无线电收讯台和无线电中心收发室合建在飞机场的航管楼内。飞机场有线通讯设施。有电话通讯和调度通
15、讯。航空导航分航路导航和着陆导航。航路导航中长波导航台(NDB)。是设在航路上,用以标出所指定航路的无线电近程导航设备。台址应选在平坦、宽敞和不被水淹的地方,并且要远离二次辐射体和干扰源。一般在航路上每隔200250公里左右设置一座;在山区或某些特别地区,不宜用NDB导航。全向信标/测距仪台(VOR/DME)全向信标和测距仪通常合建在一起。全向信标给飞机供应方位信息;测距仪则给飞机示出飞机距测距仪台的直线距离。它对天线场地的要求比较高。在一般状况下,要求以天线中心为中心,半径300米范围内,场地地形平坦又不被水淹。该台要求对二次辐射体保持肯定的距离。台址比中、长波导航台的要求严。在地形特别的状
16、况下,可选用多普勒全向信标/测距仪台(DVOR/DME),以提高设备的场地适应性。该台的有效作用距离取决于放射机的放射功率和飞机的飞行高度。在飞行高度5700米以上的高空航路上,两台相隔距离大于200公里。塔康(TACAN)和伏尔塔康(VORTAC)塔康是战术导航设备的缩写,它将测量方位和距离合成为一套装置。塔康和全向信标合建,称伏尔塔康。其方位和距离信息,也可供民用飞机的机载全向信标接收机和测距接收设备接收;军用飞机则用塔康接收设备接收。塔康和伏尔塔康台的设置以及台址的选择,和全向信标/测距仪台的要求相同。罗兰系统(LORAN)远距导航系统。20世纪80年头航空上运用的主要是“罗兰-C”。“
17、罗兰-C”系统由一个主台和两个至四个副台组成罗兰台链。“罗兰-C”系统的有效作用距离,在陆上为201*公里,在海面上为3600公里。主台和副台间的距离可达到1400公里。按所定管辖地区的要求,设置主台和副台;并按一般的长波导航台选址要求进行选址。奥米加导航系统(OMEGA)。和“罗兰-C”一样,是一种远程双曲线相位差定位系统。由于选用甚低频波段的1014千赫工作,作用距离可以很远,两台之间的距离可达900010800公里。只要有8个放射台,输出功率为10千瓦,即可覆盖全球。罗兰系统和奥米加导航系统不是一个飞机场的导航设施,而是半个地球的甚至是全球性的导航设施。飞机场终端区导航归航台着陆引导设施
18、。飞机接收导航台的无线电信号,进入飞机场区,对准跑道中心线进近着陆,这样的导航台称归航台。归航台建在跑道中心线延长线上。距跑道入口的距离为1000米左右的称近距归航台(简称近台);距离为7200米左右的称远距归航台(简称远台)。归航台一般都和指引标台合建。指引标台标出该台与跑道入口的距离。在一个着陆方向上,只设置一座归航台的(不论是近台还是远台)称单归航台着陆引导设施;假如有近台和远台,则称双归航台着陆引导设施。归航台的选址要求基本上和航路上导航台相同。由于飞机的速度越来越快,机载设备越来越先进,因此归航台引导着陆在中国飞机场已逐步淘汰。全向信标/测距仪台(VOR/DME)除可用在航路上作为导
19、航设备外,也可用作机场终端区导航设备。这时,该台应设在跑道中心旁边,距跑道中心线不少于150米、距滑行道中心线不少于75米。对四周地形、地物的技术要求,和用作航路导航台时相同。该台也可布置在指定穿云转弯点处,以引导飞机穿云下降。仪表着陆系统(ILS)。是20世纪70年头国际上通用的着陆引导设备。由航向台(LOC)、下滑台(G/P)、外指引标台(OM)、中指引标台(MM)和内指引标台(IM)组成。航向台向飞机供应航向引导信息;下滑台向飞机供应下滑道引导信息;外、中、内指引标台则分别向飞机供应飞机距跑道入口距离的信息。仪表着陆系统中,各台台址和跑道间的相互关系如图飞机场着陆引导设备台站平面布置图(
20、以一个着陆方向为例)所示。在下述距离范围内,按技术要求选定。航向台设在跑道中心线延长线上、距跑道终端约200900米,详细位置取决于天线阵前方的场地,天线阵的安装高度和天线所放射的场型。下滑台设在跑道的任一侧。距跑道中心线120200米距跑道入口约300450米,详细位置取决于下滑天线前方场地的坡度、场地前方障碍物的高度和下滑角的大小。外、中、内指引标台均设在跑道中心线延长线上,外台距跑道入口7200300米;中台1050150米;内台300450米。在指引标台安装有困难的地方,可在飞机场内下滑台处安装精密测距仪,用以起到相当于指引标台的作用。仪表着陆系统中各台的修建,除了确定各台的位置外,尚
21、须依据各台所放射的场型分别定出各台天线场地的大小和对四周地形、地物的技术要求。航向台和下滑台的技术要求比较严格,地形要平坦,不被水淹,坡度不大于1;要防止和避开二次辐射体的干扰;对架空线路、道路、车辆、飞机、栅栏、金属和非金属物体等都有不同的距离要求。仪表着陆系统的运用性能分为三类:类引导飞机下降到60米的决断高度,并在跑道视程不少于800米的条件下,胜利地进行进近;类引导飞机下降到30米的决断高度,并在跑道视程不少于400米的条件下,胜利地进行进近;类又分类A、类B和类C。类A没有决断高度的限制,在跑道视程不少于200米的条件下,在着陆的最终阶段,借助外部目视设施,着陆在跑道上,并沿跑道滑行
22、。类B与类A同,但跑道视程为不少于50米,不带外部目视设施引导飞机到跑道;之后借助外部目视设施在跑道上滑行。类C没有决断高度的限制,不借助外部目视设施引导飞机至跑道和在滑行道滑行。地面指挥引进系统。由飞机场监视雷达(ASR)和精密进近雷达(PAR)组成。没有飞机场监视雷达则不能称地面指挥引进系统,只能称精密进近雷达(也称着陆雷达)。(a)着陆雷达在困难气象条件下引导飞机着陆的协助设备。有效作用距离,在中雨天气时不少于15公里;一般天气不少于35公里。作用范围:水平面为左右10;垂直面为-18。在着陆雷达有效区域的飞机,依据飞机回波偏离雷达显示器上志向航向线和下滑线的相对位置以及飞机到着陆点的距
23、离,用无线电话指挥飞机下降到决断高度,然后驾驶员用目视着陆。着陆雷达的布置,在一般状况下,只要跑道足够长,在一条跑道两个着陆方向上都可运用同一设备。其位置一般定在跑道的中间、距跑道中心线120185米。(b)飞机场监视雷达。用来辨别监视和调配飞机场场区飞行动态。其位置与航管楼距离不要超过设备电缆所允许的长度(一般不超过201*米),设在开阔和不被水淹地方,应保证视界遮挡仰角不得大于0.5。对别的雷达设备、测距仪和全向标台等应分别保持肯定距离。微波着陆系统。由方位引导仰角引导和拉平仰角引导等设备所组成。方位引导是在水平面上可在跑道中心线每边2060区域内供应随意要求的航道,仰角引导是在垂直面上可
24、以供应很多下滑道(如从115),拉平仰角引导基本原理与仰角引导相同,但所放射的是更窄更薄的波瓣,以便为拉平阶段的飞机供应精确的仰角引导信息,该系统具有供应精密测距信息的实力。微波着陆系统工作在微波波段,空间扫描的波瓣主要依靠天波来形成,受地形和地物的影响较小,因此具有仪表着陆系统无法比拟的高精度、高稳定性、易架设、易调整等优点。随着电子计算技术、各类导航设施和传输手段的提高、发展而成为自动化空中交通管制系统。航路系统把以前人工获得和处理信息的方法,变更为自动化设施装有应答机的飞机供应连续的高度和标记信息,全部信息输入计算装置进行处理,刚好修正飞行数据,并以自动目标跟踪的字母数字形式显示在雷达显
25、示器上,将能做到困难交通的自动预示和预先规划交通流量。在航站区,自动雷达航站系统(ARTS)供应一次雷达目标和信息雷达目标两者的自动跟踪,在雷达显示器上显示每架飞机的字母数字信息。自动化系统能更快速、更精确地进行空中和航站管制。(见彩图甚高频全向信标台无线电导航设备之一(厦门航空港)友情提示:本文中关于飞机的引导员,地面上的领航者给出的范例仅供您参考拓展思维运用,飞机的引导员,地面上的领航者:该篇文章建议您自主创作。本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第13页 共13页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页