《2022年中考数学重要知识点整理.docx》由会员分享,可在线阅读,更多相关《2022年中考数学重要知识点整理.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年中考数学重要知识点整理中考数学重要学问点整理学习!不应当是盲目无助的,我们可以找寻属于自身的学习技巧,更好的提升自己的学问水平,取得更好的成果!下面是课件网小编为大家打算中考数学重要学问点整理,欢迎参阅。中考数学复习重要学问点1、合并同类项合并同类项,法则不能忘,只求系数和,字母、指数不变样。2、恒等变两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n3、平方差公式平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。4、完全平方完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍
2、放中心;首±尾括号带平方,尾项符号随中心。5、因式分解一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法娴熟不马虎,四项细致看清晰,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清晰。6、代入口决挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小中大)7、单项式运算加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。8、一元一次不等式解题的一般步骤去分母、去括号,移项时候要变号
3、,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。9、一元一次不等式组的解集大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。10、一元二次不等式、一元一次肯定值不等式的解集大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。11、分式混合运算法则分式四则运算,依次乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必需两处,结果要求最简。12、分式方程的解法步骤同乘最简公分母,化成整式写清晰,求得解后须验根,原(根)留、增(根)舍别模糊。13、最简根式的条
4、件最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。14、特别点坐标特征坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。15、象限角的平分线象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。16、平行某轴的直线平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。17、对称点坐标对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。18、自变量的取值范围分式分母不为零,偶
5、次根下负不行;零次幂底数不为零,整式、奇次根全能行。19、函数图像的移动规律若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了20、一次函数图像与性质口诀一次函数是直线,图像经过仨象限;正比例函数更简洁,经过原点始终线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,改变规律正相反;k的肯定值越大,线离横轴就越远。复习过程中常用的四种方法1、分析和综合的方法分析就是把学问的一个整体分解成各个部分来进行考察的一种思
6、维方法,综合是把学问的各个部分联合成一个整体来进行考察的一种思维方法,分析和综合是学习中常常运用的重要方法,两者亲密联系,不行分割。只分析不综合,就会见木而不见林;只综合不分析,又会只见林而不见木。2、比较和归类的方法比较是把有关的学问加以对比,以确定它们之间的相同点和不同点的思维方法。比较一般遵循两条途径进行:一是找寻出学问之间的相同之处,即异中求同;二是在找寻出了事物之间相同之处的基础上找出不同之处,即同中求异。归类是根据肯定的标准,把学问进行分门别类的思维方法。 学习中常采纳两种归类法:一是科学归类法,即从科学性动身,根据 的本质特性进行归类;二是好用归类法,即从好用性动身,按 的非本质
7、属性进行归类。3、系统化和详细化的方法系统化就是把各种有关学问纳入肯定依次或体系的思维方法。系统化不单纯是学问的分门别类,而且是把学问加以系统整理,使其构成一个比较完整的体系。在学习过程中,常常采纳编写提纲、列出表解、绘制图表等方式,把学过的学问加以系统地整理。详细化是把理论学问用于详细、个别场合的思维方法。在 学学习中,适用详细化的方式有两种:一是用所学学问应用于生活和生产实践,分析和说明一些生命现象;二是用一些生活中的详细事例来说明 学理论学问。4、抽象和概括的方法抽象是抽取学问的非本质属性或本质属性的一种思维方法,抽象可以有两种水平层次的抽象:一是非本质属性的抽象;二是本质属性的抽象。概括是将有关学问的非本质属性或本质属性联系起来的一种思维方法,它也有两种水平层次:一是非本质属性的概括,叫做感性概括;另一种是本质属性的概括,叫做理性概括。第6页 共6页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页