《统计学-贾俊平第四版第八章课后答案(目前最全)(共5页).doc》由会员分享,可在线阅读,更多相关《统计学-贾俊平第四版第八章课后答案(目前最全)(共5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上82 一种元件,要求其使用寿命不得低于700小时。现从一批这种元件中随机抽取36件,测得其平均寿命为680小时。已知该元件寿命服从正态分布,60小时,试在显著性水平005下确定这批元件是否合格。解:H0:700;H1:700已知:680 60由于n=3630,大样本,因此检验统计量:-2当0.05,查表得1.645。因为z-,故拒绝原假设,接受备择假设,说明这批产品不合格。8.3 84 糖厂用自动打包机打包,每包标准重量是100千克。每天开工后需要检验一次打包机工作是否正常。某日开工后测得9包重量(单位:千克)如下: 993 987 1005 1012 983 997
2、 995 1021 1005已知包重服从正态分布,试检验该日打包机工作是否正常(a005)?解:H0:100;H1:100经计算得:99.9778 S1.21221检验统计量:-0.055当0.05,自由度n19时,查表得2.262。因为,样本统计量落在接受区域,故接受原假设,拒绝备择假设,说明打包机工作正常。85 某种大量生产的袋装食品,按规定不得少于250克。今从一批该食品中任意抽取50袋,发现有6袋低于250克。若规定不符合标准的比例超过5就不得出厂,问该批食品能否出厂(a005)?解:解:H0:0.05;H1:0.05已知: p6/50=0.12 检验统计量:2.271当0.05,查表
3、得1.645。因为,样本统计量落在拒绝区域,故拒绝原假设,接受备择假设,说明该批食品不能出厂。8.6 87 某种电子元件的寿命x(单位:小时)服从正态分布。现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命显著地大于225小时(a005)?解:H0:225;H1:225经计算知:241.5 s98.726检验统计量:0.669当0.05,自由度n115时,查表得1.753。因为t,样本统计量落在接受区域,故接受原假设,拒绝备择假设,说明元件寿命没有显著大于2
4、25小时。8.8 8.9 810 装配一个部件时可以采用不同的方法,所关心的问题是哪一个方法的效率更高。劳动效率可以用平均装配时间反映。现从不同的装配方法中各抽取12件产品,记录各自的装配时间(单位:分钟)如下: 甲方法:31 34 29 32 35 38 34 30 29 32 31 26 乙方法:26 24 28 29 30 29 32 26 31 29 32 28两总体为正态总体,且方差相同。问两种方法的装配时间有无显著不同 (a005)?解:建立假设H0:12=0 H1:120总体正态,小样本抽样,方差未知,方差相等,检验统计量 根据样本数据计算,得12,=12,31.75,3.194
5、46,28.6667,=2.46183。 8.13262.6480.05时,临界点为2.074,此题中,故拒绝原假设,认为两种方法的装配时间有显著差异。811 调查了339名50岁以上的人,其中205名吸烟者中有43个患慢性气管炎,在134名不吸烟者中有13人患慢性气管炎。调查数据能否支持“吸烟者容易患慢性气管炎”这种观点(a005)?解:建立假设H0:12;H1:12p143/205=0.2097 n1=205 p213/134=0.097 n2=134检验统计量 3当0.05,查表得1.645。因为,拒绝原假设,说明吸烟者容易患慢性气管炎。812 为了控制贷款规模,某商业银行有个内部要求,
6、平均每项贷款数额不能超过60万元。随着经济的发展,贷款规模有增大的趋势。银行经理想了解在同样项目条件下,贷款的平均规模是否明显地超过60万元,故一个n=144的随机样本被抽出,测得=681万元,s=45。用a001的显著性水平,采用p值进行检验。解:H0:60;H1:60已知:68.1 s=45由于n=14430,大样本,因此检验统计量:2.16由于,因此P值=P(z2.16)=1-,查表的=0.9846,P值=0.0154由于P0.01,故不能拒绝原假设,说明贷款的平均规模没有明显地超过60万元。813 有一种理论认为服用阿司匹林有助于减少心脏病的发生,为了进行验证,研究人员把自愿参与实验的
7、22 000人随机平均分成两组,一组人员每星期服用三次阿司匹林(样本1),另一组人员在相同的时间服用安慰剂(样本2)持续3年之后进行检测,样本1中有104人患心脏病,样本2中有189人患心脏病。以a005的显著性水平检验服用阿司匹林是否可以降低心脏病发生率。解:建立假设H0:12;H1:12p1104/11000=0.00945 n1=11000 p2189/11000=0.01718 n2=11000检验统计量 -5当0.05,查表得1.645。因为-,拒绝原假设,说明用阿司匹林可以降低心脏病发生率。8.14 815 有人说在大学中男生的学习成绩比女生的学习成绩好。现从一个学校中随机抽取了2
8、5名男生和16名女生,对他们进行了同样题目的测试。测试结果表明,男生的平均成绩为82分,方差为56分,女生的平均成绩为78分,方差为49分。假设显著性水平=002,从上述数据中能得到什么结论?解:首先进行方差是否相等的检验:建立假设H0:;H1:n1=25,=56,n2=16,=491.143当0.02时,3.294,0.346。由于F,检验统计量的值落在接受域中,所以接受原假设,说明总体方差无显著差异。检验均值差:建立假设H0:120 H1:120总体正态,小样本抽样,方差未知,方差相等,检验统计量 根据样本数据计算,得25,=16,82,=56,78,=4953.3081.7110.02时,临界点为2.125,t,故不能拒绝原假设,不能认为大学中男生的学习成绩比女生的学习成绩好。专心-专注-专业