发育生物学期末考试复习资料(共20页).doc

上传人:飞****2 文档编号:11394434 上传时间:2022-04-18 格式:DOC 页数:20 大小:150.50KB
返回 下载 相关 举报
发育生物学期末考试复习资料(共20页).doc_第1页
第1页 / 共20页
发育生物学期末考试复习资料(共20页).doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《发育生物学期末考试复习资料(共20页).doc》由会员分享,可在线阅读,更多相关《发育生物学期末考试复习资料(共20页).doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上发育生物学期末复习资料一、发育的主要功能:产生细胞的多样性(细胞分化);保证世代的连续(繁殖)。二、发育的基本阶段:胚前期:配子发生、成熟、排放的时期 生殖生物学(reproductive biology)。胚胎期:受精、卵裂、囊胚、原肠胚、神经胚、器官发生、新个体(幼虫、幼体,变态)。胚后期:性成熟前期、性成熟期、衰老期(老年学)、死亡。三、发育的主要特征和普遍规律:细胞增殖(cell division):伴随发育的整个过程中,不同时期、不同结构增殖速度不同细胞分化(cell differentiation):从受精卵产生各种类型细胞的发育过程称为细胞分化。或者说,

2、细胞的形态、结构和功能上的差异性产生的过程为细胞分化。图式形成:胚胎细胞形成不同组织、器官和构成有序空间结构的过程。形态发生(morphogenesis):不同表型的细胞构成组织、器官,建立结构的过程。卵裂:细胞分裂快、没有(或短)细胞生长的间歇期,因而新生细胞的体积比母细胞小。胚胎在基本的pattern形成之后,其体积会显著增长,原因在于细胞数量增加、细胞体积增加、胞外物质的积累。不同组织器官的生长速度也各异。Determination:指细胞特性发生了不可逆的改变,发育潜力已经单一化。Specification:指一组细胞在中性环境下离体培养,它们仍按其正常命运图谱发育。诱导信号在细胞之间

3、传递的三种方式:扩散性信号分子、跨膜蛋白的直接互作、间隙连接信号传导特点:传递距离有限;并非所有细胞都能对某种信号发生反应;不同类型细胞可对同一信号发生不同反应, e.g., 乙酰胆碱使心肌收缩频率下降,但促使唾液腺分泌唾液。 模式生物的主要特征:取材方便;胚胎具有较强的可操作性;可进行遗传学研究脊椎动物模式生物:两栖类:非洲爪蟾;鱼类:斑马鱼;鸟类:鸡;哺乳动物:小鼠。1. 非洲爪蟾主要优点:1. 取卵方便,不受季节限制;2. 卵D=1.4cm、胚胎体积大,易于操作;3. 发育速度快,抗感染力强,易于培养。4、卵母细胞减数分裂。主要缺点:异源四倍体,突变难。2. 斑马鱼主要优点:1. 易于饲

4、养,性成熟短,3个月;产卵力强;2.体外受精和发育,胚胎透明,易于观察;3. 易于遗传操作:如杂交、诱变;4. 基因组测序已完成;5、胚胎发育机理和基因组研究。3. 鸡主要优点:1. 体外发育,易于实验;2. 器官(肢、体节)发育的重要模型;3. 基因组测序已完成。4. 小鼠主要优点:1. 世代周期短2个月;2. 人类疾病的动物模型;3. 基因组测序已完成,遗传背景清楚,实验手段完善。无脊椎动物模式生物:果蝇;线虫;其他:海胆;海鞘;文昌鱼;水螅;涡虫;拟南芥1. 黑腹果蝇主要优点:1. 个体小,生命周期短,易于繁殖,产卵力强,操作简便,成本低;2.染色体巨大,易于基因定位。其胚胎和成体表型特

5、征丰富。胚胎发育图式;3. 基因组测序已完成,遗传背景清楚,实验手段完善。2、线虫主要优点:1. 成虫体长1mm,结构简单,细胞数目少,谱系清楚;2. 性成熟短2.5-3d 易于培养,便于突变筛选,两种成虫;3. 基因组测序已完成。3、海胆主要优点:1. 最早的发育生物学模式动物;2、早期发育的模型,受精;3、已完成紫海胆Strongylocentrotus purpuratus基因组的破译、分析工作。希腊哲学家Aristotle在公元前第4世纪在对鸡胚和一些无脊椎动物胚胎观察后提出胚胎发育的两种假设:后成论(epigenesis) 与先成论(preformation)。细胞的命运早在卵裂时,

6、由细胞所获得的合子核信息决定镶嵌型发育发育生物学五大未解难题(中心问题):分化难题:相同的基因组怎样产生不同类型的细胞?形态发生难题:细胞是如何组建自己又如何形成恰当的排序?生长难题:生物体内的细胞如何知道它何时该长,何时该停?生殖难题:生殖细胞是如何发出指令形成下一代的?细胞核和细胞质中允许它们完成这一使命的指令又是什么?进化难题:在发育中的变化怎样创造新体型呢?哪些变化能够起到进化的作用? 第一章 细胞命运的决定细胞分化:细胞表型多样化和功能多样化产生的过程。 细胞命运:指正常发育情况下细胞将发育的方向,这种方向可因条件的改变而改变。细胞定型(cell commitment) - 细胞在表

7、现出明显的形态和功能变化之前,将发生一些隐蔽的变化,使细胞命运朝特定方向发展的过程。(一)、定型的两个时相:1、特化(specification) - 当一个细胞或组织放在中性环境(如培养皿中培养)可以自主分化时,那么这个细胞或组织被认为是命运已经特化了。此类细胞发育命运是可变的。2、决定(determination) - 当一个细胞或组织放在胚胎另一个部位可以自主分化时,那么这个细胞或组织被认为是命运已经决定了。此类细胞的发育命运是不可逆的。(二)、定型的两种方式:1、自主特化(autonomous specification)- 细胞发育命运完全由内部细胞质组分决定的细胞定型方式。通过胞质

8、隔离实现胞质隔离 cytoplasmic segregation - 受精卵内特定的细胞质,随着卵裂被分配到特定的裂球中,这些特殊细胞质将决定裂球的发育命运,与邻近细胞无关。镶嵌型发育(mosaic development),自主型发育- 以自主特化为特点的胚胎发育模式(栉水母、环节动物、线虫、软体动物、海鞘)2、渐进特化(依赖型特化dependent specification)- 细胞的定型分化依赖于周围的细胞或组织。同一种细胞可能因在不同的细胞或组织环境中,命运不同;通过胚胎诱导实现胚胎诱导 Embryonic induction- 胚胎发育中,一部分细胞或组织对其邻近的另一部分细胞或组

9、织产生影响,并决定其分化方向(命运)的作用调整型发育-以细胞依赖型特化为特点的胚胎发育模式(海胆、两栖类、鱼类等)。海胆胚胎除了具有典型的调整型发育特点之外,也显示出某些镶嵌型的特点。细胞定型方式及其特点: 自主特化 依赖型特化1、多数无脊椎动物具有 所有脊椎动物及少数无脊椎动物2、细胞命运由其所获得的卵内 细胞命运由细胞之间相互作用决 特定的细胞质组分决定 定,细胞的相对位置颇为重要3、卵裂方式不可改变 卵裂方式可以改变4、裂球发育命运一般不可改变 裂球的命运可改变5、细胞特化发生在胚胎细胞 大量的细胞重排和迁移发生在 大量迁移之前 细胞特化之前或与细胞特化相伴6、产生“镶嵌型”发育 产生“

10、调整型”发育注:一般两种细胞定型同时存在于胚胎发育中,但不同动物两种方式发挥作用的程度不同。一般来说,在多数无脊椎动物胚胎发育过程中,主要是细胞自主特化在发生作用,细胞有条件特化次之;而在脊椎动物胚胎发育过程中则相反,主要是细胞有条件特化在发生作用,细胞自主特化次之。胞质定域 Cytoplasmic localization:形态发生决定子在卵细胞质中呈一定形式分布,受精时发生运动,被分割到一定区域,进而进入不同的分裂球中决定分裂球发育命运的现象。动物极区:将发育为表皮;灰色新月区:将发育成脊索和神经管;黄色新月区:将发育成肌细胞;灰色卵黄区:将发育为幼虫的消化道。极叶与软体动物中胚层形成:极

11、叶-卵裂时细胞质向植物极迁移集中而成的细胞质突起。环节、软体动物在卵裂早期均有极叶产生。极叶中含有背-腹轴的决定子。极叶 与中胚层形成(肌肉和壳腺)密切相关。生殖质(极质,P颗粒):含有生殖细胞决定子的细胞质,获得生殖质的卵裂球将形成原生殖细胞。 (1)线虫:副蛔虫 Parascaris aequorum 染色体消减- 卵裂时,染色体不同程度丢失在细胞质中的现象。染色质消减者体细胞;染色质不消减者原生殖细胞。秀丽隐杆线虫胚胎细胞命运主要由卵内细胞质决定,而非邻近细胞间相互作用决定4、栉水母 细胞质定域的重新排列有些细胞质定域并不是预先存在于合子中,而是在卵裂中重新确立。(一)、海鞘形态发生决定

12、子(两类):1、可以激活基因转录的物质(蛋白因子);2、可能是以mRNA的形式存在于卵内一定区域。(二)、果蝇极质(生殖细胞决定子,生殖质)由蛋白质和RNA组成:1、gcl mRNA(germ cell-less mRNA);2、Nanos蛋白;3、 oskar mRNA调控极质的形成和装配;4、数个母源效应基因(maternal-effect gene)与之有关。细胞命运通过相互作用渐进特化:自主特化中的每个细胞命运由其“祖先”决定,即不同细胞内含有不同的形态发生决定子,它们决定细胞的命运,构成镶嵌型发育类型。如多数无脊椎动物发育。依赖性特化中的每个细胞命运取决于它遇到哪些细胞,每个细胞开始

13、都有相似的潜能,构成调整型发育,细胞命运由胚胎细胞的相互作用决定。如多数脊椎动物。总结:1、海胆胚胎存在植物极化和动物极化两个对立的梯度;其正常发育依赖于两个梯度的平衡;某些蛋白抑制剂(重金属、NaSCN和伊万斯蓝)可减弱植物极化因子的作用,而某些呼吸抑制剂(CO、KCN、NaN3、Li+)可减弱动物极化因子的作用。2、裂球的预期命运只要还未决定,都是可以调整的。裂球的发育命运一旦由于动物极细胞质和植物极细胞质彼此分裂而决定下来,便失去调整能力。即使在调整型发育的胚胎中,总会从某一时期开始,胚胎细胞的发育潜能逐渐受到限制。3、海胆胚胎在32细胞以后,多数裂球不能再形成完整胚胎。三、两栖类发育调

14、控(一)、胚胎细胞的渐进决定两栖类早期胚胎细胞核具有遗传等同性,每个细胞核都能产生完整的有机体灰色新月区域物质的重要性在于,此区含有背唇,它具发动原肠作用的能力;胚胎发育的关键性变化就发生在原肠作用过程中,迁移到一定位置的细胞的相作用。蝾螈早期原肠胚细胞发育的预期潜能大于预期命运(命运尚未决定),即表现为依赖型发育,细胞的命运取决于其所处的位置。随着发育,细胞的潜能逐渐受限,晚期原肠胚细胞为已决定细胞,表现为自主型发育(二)、初级胚胎诱导Primary embryonic inductionEmbryonic induction:胚胎发育中,一部分细胞或组织对其邻近的另一部分细胞或组织产生影响

15、,并决定其分化方向(命运)的作用。组织者:能够诱导外胚层形成神经系统,并和其他的组织一起调整为中轴器官的胚孔背唇部分诱导者:产生影响并引起另一部分细胞或组织分化方向改变的这一部分细胞。反应组织:接受影响并改变分化方向的细胞或组织。()Primary embryonic induction:脊索中胚层诱导外胚层细胞分化成神经组织的过程(神经诱导)。背唇为组织者。形态发生决定子导致细胞的自主特化;细胞间相互作用产生细胞的渐进特化。如何区别细胞定型的两个阶段:特化是指一个细胞或者组织在中性环境中也能自主分化的现象,通常这类细胞的分化命运是可逆的;决定是指一个细胞或组织当改变在胚胎中的位置时,分化命运

16、不发生改变的现象,通常这类细胞的分化命运是不可逆的。实现定型的两种方式:胞质定域(通过形态发生决定子的特异性定位,引发自主特化,如海鞘)和胚胎诱导(通过细胞相互作用,引发渐进性特化,大多数动物都有不同程度的调整型发育模式)。第二章 细胞分化的分子机制 转录前和转录的调控第一节 基因组相同和基因差异表达细胞分化cell differentiation:是指同群结构与功能相同的细胞发生一系列的内外变化,成为结构与功能不同的细胞的过程。分化过程涉及基因活性状态变化、细胞内物质组成的变化和功能的变化以及形态结构的变化。细胞表型:是细胞特定基因型在一定的环境条件下的表现,是细胞的特定性状。全能细胞tot

17、ipotent cell:产生有机体全部细胞表型。细胞 多潜能细胞pluripotent cell:产生几种特定类型的细胞。 已分化细胞differentiated cell:多潜能细胞通过分离和分化发育成的特殊细胞表型。个体发育的过程:全能性细胞多潜能性细胞分化细胞,基因选择表达。细胞分化过程中基因差异性表达的条件和原因:前提条件:携带有丰富的遗传信息及复杂的表达调控机制 细胞内环境:卵质不均匀分布 原因 细胞外环境:细胞间相互作用(位置不同,接收的信息不同)。差异基因表达的调控机制:差异基因转录:调节哪些核基因转录成RNA;核RNA的选择性加工:不同的拼接将导致同一条核RNA产生不同的转录

18、子;mRNA的选择性翻译:调节哪些mRNA翻译成蛋白质; 差别蛋白质加工:选择哪些蛋白质加工成为功能性蛋白质。转化(metaplasia):已分化的细胞转分化(trandifferentiation)为其它类型细胞的现象。三、基因组相同的例外基因组的变化1、基因删除:原生动物、线虫、昆虫、甲壳动物。2、基因扩增:爪蟾的rDNA、果蝇多线染色体。3、基因重排:免疫球蛋白基因(106108种抗体)。第二节 染色质水平基因活性的控制常染色质和异染色质化(DNA高度螺旋化)异染色质:结构型:DNA序列的折叠状况始终不变也从不转录,但可调节基因表达;机动型:某些情况下,DNA折叠可以改变,成为常染色质,

19、进行转录,有些情况反之。异染色质化过程:指具有转录活性的常染色质失去转录活性(一种高度固缩状态),成为异染色质的过程(基因沉默)。蜕皮素具有调控果蝇唾液腺细胞染色体蓬松区基因活性的作用(与染色体上的特殊部位结合)。第三节 基因转录水平的调控基因表达的时间和空间特异性基因种类(依其功能分为):1、结构Gene-编码结构蛋白和酶分子结构;2、调控Gene-编码调节蛋白,调节结构基因表达;3、转录而不翻译的Gene:rRNA GenerRNA核仁形成区,核糖体组成。 tRNA GenetRNA转运氨基酸。 转录因子:是基因转录调控的反式作用因子,是能与启动子和增强子结合的蛋白质;它含有特异性DNA结

20、合域,可与启动子或增强子等调节序列结合;激活或抑制基因的表达。种类: 通用转录因子(TFD,TFB,TFA,TFF)和组织特异性转录因子转录因子进行调控的途经: 蛋白质和DNA相互作用; 蛋白质和配体结合; 蛋白质之间的相互作用以及蛋白质的修饰(磷酸化)。甾类激素(Steroid hormones)以两种方式激活基因的转录: A:受体在激素进入细胞前就结合在靶基因调控区上,但只有当激素与该受体结合后才激活转录。Thyroid hormones甲状腺激素;RA视黄酸。B:激素先与胞质中其受体结合,再进入核,激活转录。glucocorticoid肾上腺皮质激素。第三章 细胞分化的分子机制 转录后的

21、调控第一节 RNA加工水平的调控大多数编码细胞特异性蛋白质的基因选择性表达的调控主要发生在转录水平,但转录后调控对决定蛋白质结构和功能重要。真核生物:DNA nRNA(核)mRNA(质)。异质性核RNA(hnRNA):由于转录模板不同,nRNA的长度和性质差别较大。前体mRNA的加工对早期发育的调控,RNA加工水平的调控第二节 翻译和翻译后的调控mRNA masking(掩蔽):mRNA与其它蛋白结合成ribonucleoprotein (RNP) complex,阻止与核糖体结合;卵成熟或受精后,离子强度改变或蛋白磷酸化等导致RNP解体,翻译得以进行。5 Cap(7-甲基鸟苷酸)的调控:如某

22、些种类(moths),其卵中的部分mRNA的5-鸟苷酸在受精后才甲基化,然后开始翻译。mRNA sequester(隐蔽):指mRNA被阻隔于蛋白合成装置。如海胆未受精卵的组蛋白 mRNA定位于卵原核中,受精后原核破裂,mRNA才能进入胞质开始翻译。Poly(A)对翻译的调控:卵母细胞减数分裂成熟前后,mRNA polyA的长度发生变化(由3UTR调控)。带长polyA的mRNA具翻译活性。在小鼠的未成熟卵母细胞质中可以翻译的mRNA具有较长的poly(A), 减数成熟分裂后poly(A)降解,翻译终止。在减数成熟分裂前不表达的mRNA的poly(A)较短(15-90A), 但其3UTR具有胞

23、质多聚腺苷酸化信号序列(CPEs)(UUUUAU in mice and frogs)。减数成熟分裂后这些 mRNA迅速加上一个长的polyA,开始翻译。翻译效率的调控:如将海胆卵母细胞裂解液的pH从自然状态下的pH6.9提高到pH7.4(受精后自然状态下的pH),蛋白质合成量急剧增加。受精后pH升高的作用可能包括去除mRNA的封闭蛋白和激活翻译起始因子。4.、RNA编辑:基因转录产生的mRNA分子中,由于核苷酸的缺失,插入或置换,基因转录物的序列不与基因编码序列互补,使翻译生成的蛋白质的氨基酸组成,不同于基因序列中的编码信息,这种现象称为RNA编辑 5、mRNA寿命的不同对蛋白质合成的调控

24、通过mRNA稳定性不同和mRNA的选择性降解调控蛋白质的合成不同基因的mRNA的半衰期不同,主要受其3UTR控制。短寿命mRNA的3UTR通常含有一个或多个AU富集区,其作用是促进Poly(A)降解。三、翻译后水平上的调控蛋白质的修饰激活 e.g., 多肽链断裂(胰岛素)、磷酸化;蛋白质自身降解或与抑制性配体结合 e.g., DORSAL;亚细胞定位而激活 e.g., membrane proteins;与其它蛋白质装配成为功能单位 e.g., hemoglobin;与离子结合而激活 e.g., calmodulin。第四章 发育中的信号传导信号传导(signal transduction):

25、是指靶细胞通过特异性受体识别细胞外信号分子,并把细胞外信号转变为细胞内信号,引起细胞发生反应的过程。第一节 参与早期胚胎发育的信号调节途径TGF信号途径:分泌性信号;早期发育中起关键作用Wnt信号途径:分泌性信号;早期胚胎发育Hedgehog信号途径:分泌性信号;动物发育中起重要作用Notch信号途径:单跨膜受体蛋白;NC分化,体节发育(脊)酪氨酸激酶受体途径:细胞表面受体;早期发育JAK-STAT信号途径:膜受体结合蛋白;血细胞及骨骼生长视黄酸(retinoic acid,RA)途径:小分子脂溶性信号第二节 信号活性的调控与相互关联一、信号活性的调控:对配体活性的调节 如加工修饰(Wnt和H

26、edgehog被棕榈酰化);配体结合因子(BMP抑制因子:Noggin、Chordin、Caronte等);对受体活性的调节 与受体蛋白正确折叠加工有关的分子伴侣;蛋白多糖(抑制FGF信号的活性);蛋白聚糖(促进Wnt、FGF辅助受体的活性);对信号途径中转录效应因子活性的调控 浓度和稳定性的调节(泛素-蛋白酶体途径可调控Wnt中的-catenin,TGF 途径的Smad);向细胞核转运的调控(MAPK可磷酸化Smad抑制其向核内转运);信号活性的负反馈调节 一个信号途径的活化激活相应信号途径的负调控因子的表达,从而抑制相应信号途径的过度活化(FGF信号途径中的Sef和Sprouty)。第五章

27、 生殖细胞的发生原生殖细胞(Primordial germ cell,PGC)- 性别尚未分化的生殖细胞。二、生殖质与生殖细胞的决定生殖质Germ plasm:具有一定形态结构的特殊细胞质,主要由蛋白质和RNA构成。原生殖细胞的决定从受精卵的第一次卵裂就开始了,到4次分裂以后,原生殖细胞将发生均等分裂;含P颗粒(Posterior granules)的细胞构成生殖系,P1,P2,P3,P4,P4为生殖细胞的始祖细胞;P颗粒在受精过程和第一次卵裂过程中的不对称定位,26细胞期时全部P颗粒都在P4细胞中。线虫原生殖细胞的命运决定于Pie-1: Pie-1基因的功能涉及P细胞维持生殖干细胞的属性,其

28、编码核蛋白,仅存于生殖干细胞中。其缺失导致P1P4也向体细胞分化。其作用可能是抑制生殖细胞中体细胞相关基因转录活性。2、果蝇(Drosophila):生命周期短,易于繁殖,操作简便,成本低;产卵力强,其胚胎和成体表型特征丰富,遗传背景清楚。果蝇的极细胞将分化为原生殖细胞,果蝇的原生殖细胞的命运决定于后部极质。爪蟾生殖细胞命运也决定于生殖质,爪蟾生殖质定位于卵的植物极,富含RNA和蛋白质。生殖质定位依赖于微管。蛙受精的合子中生殖质成分(种质)靠近植物极。极细胞(Polar cell)中含有极质(含生殖细胞决定子,又称生殖质颗粒),9次卵裂后,有5个细胞核移至未来胚胎的末端,分化为极细胞。三、原生

29、殖细胞的迁移动物在生殖腺原基发生时,原生质细胞以不同的方式迁移进入生殖腺原基,在那里进行生殖细胞的分化。果蝇原始生殖细胞起源于胚胎的后端,经后中肠穿过肠壁和中胚层,形成两个分离的队列,最终聚集在生殖腺中。2、爪蟾原生殖细胞的迁移路线:植物极囊胚腔腹侧内层细胞形成PGCs 幼虫肠后部聚集沿肠向背部迁移至中肠背部的生殖嵴中,每个生殖嵴约有30 PGCs。3、鸟类原生殖细胞:生殖新月区形成血管时,PGC进入血管,通过血液循环到达生殖嵴所在处(后肠背系膜),然后穿出血管,再迁移进入生殖嵴。4、小鼠原生殖细胞的迁移:经过内胚层、尿囊、卵黄囊到达后肠,再沿后肠背壁向前迁移到达生殖嵴,此时的PGC达2500

30、5000个。PGCs的迁移与其接触的上皮细胞有关,BMP,SCF;通过变形运动实现迁移。四、生殖细胞定向分化的两种决定:生精或生卵之间的选择(性腺内微环境决定);有丝分裂(维持干细胞)和减数分裂(分化为配子)之间的选择影响因素:性染色体或常染色体上的基因;性腺中的微环境(性激素);环境因子。幼虫期离开生殖腺远端的细胞进入减数分裂,产生精子;在成虫期离开生殖腺远端的生殖细胞通过减数分裂产生卵子。Fem家族基因:决定精子和卵子的定向分化,Fem表达FEM,GC精子,反之,GC卵子。生殖腺近端的细胞进入减数分裂,而留在远端的细胞继续有丝分裂。精子发生:雄性哺乳动物,原生殖细胞一旦迁入生殖嵴,便与生殖

31、嵴体细胞结合形成上皮样的生殖索(性索sex cord)。在实现生殖腺的初步分化以后,生殖干细胞进入休眠状态。在个体性成熟过程中,性索中空形成生精小管(seminiferous bubule )生殖干细胞 雄配子;体细胞 支持细胞细胞间桥:D=1m,允许离子和分子通过,使发育同步化。1、核物质浓缩、核形状改变2、细胞质:顶体:高尔基体形成顶体泡,呈双层膜囊状覆盖在精子核的头部;精子鞭毛:中心粒迁至核基部形成并延伸;线粒体:线粒体环绕在鞭毛基部;其它胞质废弃。鞭毛精子(哺乳类)由头部(顶体、细胞核)、颈部(近端中心粒、远端中心粒)和尾部(中段、主段、末段)组成。精子发生过程中基因表达分别发生在减数

32、分裂的双线期、精子分化的启动期和单倍体精子细胞期。1、果蝇 Y染色体上的转录是控制精子发生所必需的2、精子发生中被转录的基因产物,通常是精子运动以及精子与卵子结合时所必需的蛋白质。3、初级精母细胞贮存mRNA,供后期发育阶段使用。鱼精蛋白(在精子核浓缩过程中,替代染色质的组蛋白)。4、精子组蛋白发生甲基化修饰。甲基化程度高会导致被甲基化基因转录水平降低。在精子发生的后期,许多动物精子的组蛋白处于被修饰状态,如N-末端被磷酸化、甲基化修饰等。这种修饰进一步导致染色体的凝集,使转录活动急剧下降。卵子发生一、卵子发生的最基本特点:形成单倍体的细胞核;建立一个由酶、RNA、细胞器和代谢产物等所组成的细

33、胞质库;初级卵母细胞有一个较长的减数分裂前期,此期卵母细胞得以充分地生长。二、精卵发生的比较不同点:场所和连续性:精子发生:均在精巢内完成,连续;卵子发生:整个过程不一定都在卵巢内完成,非连续。蛔虫型:生发泡尚未破裂时成熟;贻贝型:第一次成熟分裂中期;脊椎动物型:第二次成熟分裂中期;海胆型:两次成熟分裂以后精卵发生数目:精多(亿)卵少(1百万)。产卵量多少与生殖方式有关:卵生不护卵的动物,产卵量最多(百万个); 卵生护卵者,较少(百个千个);卵胎生和胎生者,产卵量最少(数个几十个)。前期I(细线期) :染色体上出现染色粒; DNA完成复制。前期I(偶线期):同源染色体配对;联会;二价体形成前期

34、。I(粗线期) :二价体四分体;非姐妹染色单体之间出现交叉。前期I(双线期):联会复合体消失;同源染色体某些部分分离。前期I(终变期)。可分为四个阶段(图13-1):G1期(gap1),指从有丝分裂完成到期DNA复制之前的间隙时间;S期(synthesis phase),指DNA复制的时期,只有在这一时期H3-TDR才能掺入新合成的DNA中;G2期(gap2),指DNA复制完成到有丝分裂开始之前的一段时间;M期又称D期(mitosis or division),细胞分裂开始到结束。同源染色体:大小形态相同、结构相似、一条来自父亲一条来自母亲的一对染色体3、减数分裂均等性:精细胞均等,产生四个等

35、大的精细胞;卵母细胞不均等,产生一个均等的卵子和2-3个极体。 极体(polar body)-卵子发生中产生的含少量细胞质的细胞。4、细胞质分化时间:精子晚,两次成熟分裂后进行;卵子早,初级卵母细胞阶段。5、辅助细胞参与: 支持细胞(精子发生);滤泡细胞(卵子发生)。6、细胞间桥持续时间:精子整个发生过程;卵原细胞阶段。孤雌生殖:二倍体的卵子不需要受精直接发育为新个体。果蝇:第二次减数分裂后,1个极体作为“精子”与卵子结合。蜥蜴:减数分裂前染色体数目加倍。蚱蜢:不经过减数分裂,而是通过连续的两次有丝分裂。蜜蜂:单倍体未受精卵发育为雄蜂,其精子发生时不经过第一次减数分裂。孕酮能促进减数分裂继续进

36、行。哺乳动物排卵两种方式: 交配刺激引起排卵:家兔、水貂等,交配活动对子宫颈的刺激导致垂体释放促性腺激素。周期性排卵:大多数哺乳动物只在一年中某特定的动情期排卵。环境因素,主要是光照种类和光照时间刺激丘脑释放促性腺激素释放因子。 哺乳类 (周期性成熟排卵) FSH (促滤泡激素)卵母细胞生长发育 LH (促卵黄生成素) 滤泡细胞释放雌激素 促进滤泡生长 增多,指令下丘脑垂体减少FSH分泌,增加LH分泌 排卵后,残余滤泡黄体孕酮、雌激素 反馈,下丘脑关闭垂体分泌。卵子未受精,黄体退化(3-10日)激素减少,解除对垂体分泌的抑制,再度引起分泌。第六章 受精fertilization的机制定义:两性

37、生殖细胞结合并创造出具备源自双亲遗传潜力的新个体的过程受精过程包括两种活动:性活动(双亲基因的组合,并传给后代);复制活动(新生物体产生的过程,激发卵子发育)。受精功能:将父母的基因传递给子代;卵细胞质中激发一些确保发育正常进行的系统反应(卵子被激活)。受精包括以下几个主要过程:卵母细胞成熟、精子获能、精卵间的接触和识别、精子入卵、卵的激动并开始发育。受精可概括为两个重要的问题:受精的专一性(识别)和唯一性(皮层反应)。精核进入卵细胞以后,受精卵细胞质的重组和触发胚胎发育程序的启动:包括雌雄原核融合、代谢启动、胞质重组、胚胎发育程序开始等。第一节 受精的专一性(精卵的识别)卵质外是质膜(pla

38、sma membrane),质膜外是卵黄膜(vitelline envelope)。质膜在受精时可以调控特定的离子在卵子内外的流动,且能与精子质膜融合。卵黄膜能识别同一物种的精子,对受精的物种特异性有非常重要的作用。在哺乳动物中特称为透明带(zona pellucida),紧靠着透明带的一层滤泡细胞称为放射冠(corona radiata)。皮层(cortex)是质膜下一层约5um厚的胶状胞质,比内部的胞质硬,含有高浓度的肌动蛋白分子,受精时,聚合成微丝,延伸到细胞表面形成微绒毛(microvilli),帮助精子进入卵子。皮层内有皮层颗粒(cortical granule),含消化酶、粘多糖、

39、黏性糖蛋白和透明蛋白,阻止多精入卵并可以为卵裂球提供支持。精子和卵子的相互作用主要分为6个步骤: 1. 精子获能;2. 精子的趋化性;3. 精子的顶体反应,释放水解酶;4. 精子与卵子外围的卵黄膜(透明带)结合;5. 精子穿过卵外的结构;6. 精卵细胞质膜的融合。哺乳动物的精子需要在雌性生殖道中停留一个特定的时期,以获得对卵子受精的能力,这一过程称为精子获能(capacitation)。获能期间,精子的细胞膜发生了一系列变化,包括内膜分子重排、精子表面某些成分移除,但分子机制还不很清楚。哺乳动物精子获能的位置随物种的不同有很大的差异,如许多啮齿类、猪和狗在输卵管获能。动物的受精有着严格的物种特

40、异性,这是保证其个体发育正常进行的基本条件,也是生物进化中生存选择的必然结果卵膜上物种特异性受体识别精子。胶膜具有凝集精子和诱发顶体反应的作用,胶膜中的多糖物质可诱发顶体反应。精子的顶体反应:系精子在与卵子结合前,精子将顶体中的酶系释放出来,水解卵子外围的层层保护而到达卵黄腔的过程。 顶体反应是一种胞吐现象,类似于体细胞分泌颗粒排放内含物的全过程。它包括精子与卵外的卵膜接触,顶体外膜和精子的细胞质膜的多位点融合,导致顶体内含物的释放,暴露出顶体内膜及与其结合的酶类。透明质酸酶使卵丘细胞之间的基质溶解形成一个孔道,精子运动通过卵丘; 卵冠穿透酶使精子穿过放射冠; 顶体酶水解透明带中的蛋白质,形成

41、一条狭窄的孔道,使精子穿过透明带。 这有助于精子分解并穿过卵膜,与卵质膜相融合而受精。具有顶体结构的无脊椎动物或脊椎动物中,只有发生顶体反应的精子才能进入卵子并与卵子融合,也只有精子与卵子接触时才发生顶体反应。海胆的顶体反应:精子与卵子胶膜结合后,可引起顶体反应。顶体发应包括两个主要的事件:顶体膜与精子质膜发生融合以及顶体突起的形成。哺乳动物的顶体反应:哺乳动物的顶体是一个帽状结构,覆盖于精核的前端。顶体反应时,顶体帽部分的质膜与顶体外膜在多处发生融合,使顶体内的物质从融合处释放出来。精子细胞膜上有三种受体:sp56(56kDa,半乳糖结合蛋白)-可与ZP3分子上的半乳糖端部相结合。如果ZP3

42、的一个半乳糖基发生丢失或改变,精子将无法与卵子结合。半乳糖基转移酶(GalTase)可与ZP3分子上的N-乙酰葡糖胺结合,使精子G蛋白激活并诱导顶体反应。P95(ZP受体激酶)(95kDa)一种跨膜蛋白,其外侧部分可与ZP3分子特异结合,而内侧部分具有酪氨酸激酶的功能。该酶被激活后,导致顶体反应。精子头部首先与ZP3结合,使透明带失去结合精子的能力(精子表面的GalTase,卵子皮层颗粒释放的N-乙酰基糖酶);同时激活精子G蛋白触发了顶体反应。1、顶体反应的分子机制(仓鼠):受体结合使精子膜上的离子通道打开;Ca2+进入精子质膜与顶体外膜之间的空隙;Ca2+激活ATP酶,导致顶体增加摄入Ca2

43、+到顶体内;Ca2+使前顶体粒蛋白变为具有生物活性的顶体粒蛋白;顶体粒蛋白激活磷脂酶;磷脂酶使顶体外膜的卵磷脂分解为溶血卵磷脂和游离脂肪酸;溶血卵磷质的增加可干扰顶体外膜脂类成分促使质膜、顶体外膜溶解,发生胞吐作用。2、顶体反应的调控机制离子调控:精子质膜上Ca2+泵、Na+/ Ca2+交换器和钙离子通道中的Ca2+转换系统均参与调控细胞内的Ca2+浓度;K+、Mg2+、Cl+ 、H+等也参与顶体反应的调控。脂质调控:参与调控膜的流动性和“钙泵”的活性。磷酸肌醇调控:多磷酸肌醇将在磷酯酶C的作用下,引起细胞内非线粒体贮存的Ca2+释放,激活一些顶体反应所需的关键酶,诱导顶体反应。第二节 受精的

44、唯一性精子在受精中的主要作用是激活卵子并为卵子提供单倍体的核。绝大多数动物为单精入卵(有尾两栖类、鸟类等为生理性多精入卵)。受精过程通常是一个大量精子参与的活动,在这个过程中,卵细胞凭借两套机制阻挡多余精子入卵,即快封闭反应(膜电位变化)和慢封闭反应(皮层反应)。如人为维持原有的膜电位,可诱导多精受精现象发生;如改变正常的初始膜电位,则会阻止卵细胞的受精。二、慢速封闭反应(皮层反应)受精膜产生在精子的入卵点,通过卵膜上一系列信号传导,激活并导致Ca2+释放,激发皮层反应(皮层颗粒破裂,受精膜产生)。形成受精膜的慢速阻止:海胆卵受精后2060秒内,质膜下的皮质颗粒与质膜融合,释放其内含物形成受精

45、膜,阻止其它精子的进入。皮层反应:是的反应之一,主要是防止多精受精,属于多精受精的二级阻断。机理是:当精细胞与卵细胞的细胞质膜融合时,激活了卵细胞的磷脂肌醇信号转导途径,引起卵细胞局部胞质溶胶中Ca2+浓度的升高,激活了卵细胞;定位于卵细胞质外周的皮层颗粒与卵细胞质膜融合释放内含物(酶类);释放的酶类快速分布到整个卵细胞的表面,改变透明带的结构,使之变得“坚硬”,这样,精子就不能与卵细胞结合,从而提供了一种缓慢的二级多精受精的阻断作用。从机理上说,皮层颗粒释放的酶类破坏了卵细胞透明带中与精细胞结合的受体。哺乳动物不形成受精膜,但皮质颗粒中释放的酶对透明带中的精子受体分子进行修饰,使之丧失与精子

46、结合的能力,因此,称为透明带反应。哺乳动物(斜向入卵),整个精子入卵。哺乳动物雌雄原核的不均等性。形成合子的雌雄原核所携带的单倍体基因组并不等同。一个尚未被了解的生物学进程选择性地沉默父本或母本来源的等位基因,即印记。因此只有来自于精子和卵子的二倍体才能正常发育,而仅来自于雌核或雄核的二倍体胚胎则要在发育过程中夭亡。卵子激活(activation)- 精子入卵,使卵子由原来的休眠状态(代谢降低、蛋白和核酸的合成大幅度降低,其中的DNA合成完全停止)进入活动状态的过程。这一活化过程分为两个阶段:一、早期反应(应答):指从精卵接触到发生皮质反应的数秒钟内所发生的事件。二、晚期反应(应答):在受精开始后数分钟内发生的事件。第一次卵裂的位置不是随机的,而是由精子的进入点和卵质的旋转方向所决定的。第七章 卵裂(cleavage)卵裂期:受精卵快速有丝分裂增加细胞数目,并产生由较小的细胞构成的囊胚的过程。受精卵的早期发育可分成三个阶段:(1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁