三角形-“心”的向量关系(共4页).doc

上传人:飞****2 文档编号:11387520 上传时间:2022-04-18 格式:DOC 页数:4 大小:205.50KB
返回 下载 相关 举报
三角形-“心”的向量关系(共4页).doc_第1页
第1页 / 共4页
三角形-“心”的向量关系(共4页).doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《三角形-“心”的向量关系(共4页).doc》由会员分享,可在线阅读,更多相关《三角形-“心”的向量关系(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上三角形 “心”的向量关系我们都知道,在三角形中,因为有三边和三角,故有很多的心。其中作为学生应掌握的四个心:重心,内心,外心,垂心。不仅要理解其定义、性质,还需了解和分析其向量的表示形式。由于向量是一种研究几何图形的另一种工具,所以我们有必要对它们进行整理和归纳,让同行借鉴。一 各心的定义。1 重心:三角形三条边的中线的交点。其性质一是连接重心和顶点,延长后必交于对应边的中点。其性质二是重心把中线长分成2:1。2 垂心:三角形三边的高线的交点。其性质为垂心与顶点的连线必与对应的边垂直。3 外心:三角形三边的中垂线的交点,即三角形的外接圆的圆心。其性质是外心到三顶点等距

2、离。4 内心:三角形三内角平分线的交点,即三角形的内切圆的圆心。其性质是内心到三边等距离。二 各心的向量表示。在三角形ABC中,点为平面内一点,若满足:1,则点为三角形的重心。 分析:由,以为邻边作一平行四边形, 点D为BC中点,如图,由向量的平行四边形法则,有,交BC于D,从而有故为重心。2,则点为三角形的外心。3,或者,则点为三角形的垂心。分析:由有三个等式,其中一个如, 则有,有,故。同理可证,点为三角形的垂心。 而在三角形ABC中,记,则由 ,展开为,则 故 ,同理可证,从而点为三角形的垂心。4,则点为三角形的内心。 分析:若点为三角形的内心。如图,延长,过点C作,由于相似,有,由AD

3、为角A的平分线,有,从而有,故 同理可得,而BO为角B的内角平分线, 有,故 而,所以,有三 动点的轨迹过三角形心的问题:设点P为三角形所在平面内的一个定点,点Q为平面内的一个动点,若满足:1,(其中),则动点Q一定过的重心。2,(其中),则动点Q一定过的内心。 分析:由于表示方向的单位向量之和,由菱形性质可知, 为角A的内角平分线。3(其中),则动点Q一定过 的垂心。 分析:下面只需说明的性质。 如图,在中,延长AD,过点B作记 则,故有 , 由,从而有,有与共线,从而,与垂直。4(其中),则动点Q一定过的外心。四三角形的外心与它的垂心H的关系: 。在中,以BC所在的直线为x轴,BC的中点为原点建立坐标系。设,。则不难求得它的外心坐标,从而有 。它的垂心坐标,从而有 。 向量作为一种新的计算工具,其在不少的规律上有简明的表现,只要我们用心去发现,还能找到更加美丽的关系的。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁