数字推理题的基本题型和规律(共9页).doc

上传人:飞****2 文档编号:11340178 上传时间:2022-04-18 格式:DOC 页数:9 大小:22.50KB
返回 下载 相关 举报
数字推理题的基本题型和规律(共9页).doc_第1页
第1页 / 共9页
数字推理题的基本题型和规律(共9页).doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《数字推理题的基本题型和规律(共9页).doc》由会员分享,可在线阅读,更多相关《数字推理题的基本题型和规律(共9页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上数字推理题的基本题型和规律归纳总结:数字推理的主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。在实际解题过程中,我们根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列 :数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个

2、数的平方等于第二个数8、前一个数的平方再加或者减一个常数等于第二个数;9、前一个数乘一个倍数加减一个常数等于第二个数;10、隔项数列:数列相隔两项呈现一定规律,11、全奇 、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律。1、数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成2、 每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n3、数列中每一个数字都是n的倍数加减一个常数以上是数字推理的一些基本规律,考生必须掌握。但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要学员在对各种

3、题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。这里我们提供为刚刚接触数字推理题型的学员提供一种最基本的解题思路,学员按照这种思路来训练自己,能够逐步熟悉各种题型,掌握和运用数字推理的基本规律。当学员对题型和规律已经很熟悉后,就可以按照自己的总结的简单方法来解答问题。第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。当然,也可以先寻找数字构成的规律,在从数字相

4、邻关系上规律。我们这里所介绍的是数字推理的一般规律,学员在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案的。数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案。按照数字排列的规律, 数字推理题一般可分为以下几种类型:一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:1、全是奇数:例题:1 5 3 7 ( )A .2 B.8 C.9 D.12解析:答案是C ,整个数列中全都是奇数,而答案中只有答案C是奇数2、全是偶数:例题:2 6 4 8 ( )A. 1 B. 3 C

5、. 5 D. 10解析:答案是D ,整个数列中全都是偶数,只有答案D是偶数。3、奇、偶相间例题:2 13 4 17 6 ( )A.8 B. 10 C. 19 D. 12解析:整个数列奇偶相间,偶数后面应该是奇数,答案是C。练习:2,1,4,3,( ),5 99年考题二、排序:题目中的间隔的数字之间有排序规律1、例题:34,21,35,20,36( )A.19 B.18 C.17 D.16解析:数列中34,35,36为顺序,21,20为逆序,因此,答案为A。三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数例题:4,5,( ),14,23,37A.6 B.7 C.8 D.9注意:

6、空缺项在中间,从两边找规律,这个方法可以用到任何题型;解析:4+5=9 5+9=14 9+14=23 14+23=37,因此,答案为D;练习:6,9,( ),24,39 / 1,0,1,1,2,3,5,( )2、前两数相加再加或者减一个常数等于第三数例题:22,35,56,90,( ) 99年考题A162 B.156 C.148 D.145解析: 22+35-1=56 35+56-1=90 56+90-1=145,答案为D。四、减法:题目中的数字通过相减,寻找减得的差值之间的规律1、前两个数的差等于第三个数:例题:6,3,3,( ),3,-3A.0 B.1 C.2 D.3答案是A解析:6-3=

7、3 3-3=0 3-0=3 0-3=-3提醒:“空缺项在中间,从两边找规律”2、等差数列:例题:5,10,15,( )A. 16 B.20 C.25 D.30答案是B.解析:通过相减发现:相邻的数之间的差都是5,典型等差数列;3、二级等差:相减的差值之间是等差数列例题:115,110,106,103,( )A.102 B.101 C.100 D.99 答案是B解析:邻数之间的差值为5、4、3、(2), 等差数列,差值为1103-2=1014、二级等比:相减的差是等比数列例题:0,3,9,21,45, ( )相邻的数的差为3,6,12,24,48,答案为93例题:-2,-1,1,5,( ),29

8、 -99年考题解析:-1-(-2)=1 ,1-(-1)=2,5-1=4,13-5=8,29-13=16后一个数减前一个数的差值为:1,2,4, 8,16,所以答案是135、相减的差为完全平方或开方或其他规律例题:1,5,14,30,55, ( )相邻的数的差为4,9,16,25,则答案为55+36=916、相隔数相减呈上述规律:例题:53,48,50,45,47A.38 B.42 C.46 D.51解析:53-50=3 50-47=3 48-45=3 45-3=42 答案为B注意:“相隔”可以在任何题型中出现五、乘法:1、前两个数的乘积等于第三个数例题:1,2,2,4,8,32,( )前两个数

9、的乘积等于第三个数,答案是2562、前一个数乘以一个数加一个常数等于第二个数,n1m+a=n2例题:6,14,30,62,( )A.85 B.92 C.126 D.250解析:62+2=14 142+2=30 302+2=62 622+2=126,答案为C练习:28,54,106,210,( )3、两数相乘的积呈现规律:等差,等比,平方,.例题:3/2, 2/3, 3/4,1/3,3/8 ( ) (99年海关考题)A. 1/6 B.2/9 C.4/3 D.4/9解析:3/22/3=1 2/33/4=1/2 3/41/3=1/4 1/33/8=1/83/8?=1/16 答案是 A六、除法:1、两

10、数相除等于第三数2、两数相除的商呈现规律:顺序,等差,等比,平方,.七、平方:1、完全平方数列:正序:4,9,16,25逆序:100,81,64,49,36间序:1,1,2,4,3,9,4,(16)2、前一个数的平方是第二个数。1) 直接得出:2,4,16,( )解析:前一个数的平方等于第三个数,答案为256。2)前一个数的平方加减一个数等于第二个数:1,2,5,26,(677) 前一个数的平方减1等于第三个数,答案为6773、隐含完全平方数列:1)通过加减化归成完全平方数列:0,3,8,15,24,( )前一个数加1分别得到1,4,9,16,25,分别为1,2,3,4,5的平方,答案为6的平

11、方36。2)通过乘除化归成完全平方数列:3,12,27,48,( )3, 12,27,48同除以3,得1,4,9,16,显然,答案为753)间隔加减,得到一个平方数列:例:65,35,17,( ),1A.15 B.13 C.9 D.3解析:不难感觉到隐含一个平方数列。进一步思考发现规律是:65等于8的平方加1,35等于6的平方减1,17等于4的平方加1,所以下一个数应该是2的平方减1等于3,答案是D.练习1:65,35,17,(3 ),1 A.15 B.13 C.9 D.3练习2:0, 2, 8,18,(24 ) A.24 B.32 C.36 D.52( 99考题)八、开方:技巧:把不包括根号

12、的数(有理数),根号外的数,都变成根号内的数,寻找根号内的数之间的规律:是存在序列规律,还是存在前后生成的规律。九、立方:1、立方数列:例题:1,8,27,64,( )解析:数列中前四项为1,2,3,4的立方,显然答案为5的立方,为125。2、立方加减乘除得到的数列:例题:0,7,26,63 ,( )解析:前四项分别为1,2,3,4的立方减1,答案为5的立方减1,为124。十、特殊规律的数列:1、前一个数的组成部分生成第二个数的组成部分:例题:1,1/2,2/3,3/5,5/8,8/13,( )答案是:13/21,分母等于前一个数的分子与分母的和,分子等于前一个数的分母。2、数字升高(或其它排

13、序),幂数降低(或其它规律)。例题:1,8,9,4,( ),1/6A3 B.2 C.1 D.1/3解析:1,8,9,4,( ),1/6依次为1的4次方,2的三次方,3的2次方(平方),4的一次方,( ),6的负一次方。存在1,2,3,4,( ),6和4,3,2,1,( ),-1两个序列。答案应该是5的0次方,1。例题:1、4,5,7,11,19 ( )A、27 B、31 C 35 D 41解题思路:1、首先此题不是隔项数列。两个数相加不等于第三数。两个数相减的差为1,2,4,8,分别是2的0次方,1次方,2次方,3次方,因此,答案应为19加上2的4次方,即35,答案为C。例题2:34 36 35 35 ( )34 37 ( )A36,33 B33,36 C37,34 D34,37解题思路:首先观察数列,看是否为隔项数列。此数列,隔项分别为34 35 ( ) 37和36 35 34 ( )两个数列,答案为A。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁