《2022材料成型及控制工程专业综合实验报告x.docx》由会员分享,可在线阅读,更多相关《2022材料成型及控制工程专业综合实验报告x.docx(50页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022材料成型及控制工程专业综合实验报告x .1. .1. .1. .1. .1. .1. .1. .2. .3. .3. .3. .3. .3. .4. .4. .4 .4 .4. .4. .4. .5 .5. .8. .8 1.0. 15. 实验课题 实验目标 实验原理 3.1轧制实验原理. 3.1.1轧制原理 3.1.2轧制力测定原理. 3.2拉伸实验原理 4实验参数设定 4.1轧制实验参数的确定 4.1.1试样参数的设定. 4.1.2轧制参数的设定. 4.2拉伸实验参数的确定 5实验内容 5.1轧制实验 5.1.1实验仪器及材料. 5.1.2实验步骤 5.2拉伸实验 5.2.1实验仪
2、器及材料. 5.2.2实验步骤 6实验结果与分析 6.1轧制实验结果 6.2分析与讨论 6.2.1轧制实验 6.2拉伸实验结果 7实验小结 综合实验 1实验课题 变形程度对金届板材冷轧变形力和机械性能的影响。 2实验目标 通过改变压下量 h ,即改变变形程度h ( h (H h)/H h/H )实验参数分别进 行冷轧和拉伸试验,以此来研究铝板在进行同步冷轧时轧制力随变形程度的变化规律,以 及在不同压下量时钢板的机械性能(主要为屈服强度s和抗拉强度b)的影响。 3实验原理 3.1轧制实验原理 3.1.1轧制原理 同步轧制是指上下两轧辗直径相等,转速相同,且均为主动辗、轧制过程对两个轧辗 完全对称
3、、轧辗为刚性、轧件除受轧辗作用外,不受其它任何外力作用、轧件在入辗处和 出辗处速度均匀、轧件的机械性质均匀的轧制。在轧制过程中,同步轧制变形区金届在前 滑区,后滑区上下表面摩擦力都是指向中性面,中性面附近单位下力增强,使平均单位轧 制增大。同步轧制时单位轧制压力沿变形区长度方向的类似抛物线形状分布。 3.1.2轧制力测定原理 目前测量轧制力的方法有两种:应力测量法和传感器法。而传感器测量法乂有电容式、 压磋式和电阻式三大类,本实验只用电阻式。电阻应变式传感器是利用金届丝在外力的作 用下发生机械变形时,其电阻值将发生变化这一金届的电阻应变 图1同步轧制示意图 效应,将被测量转换为电量的一种传感器
4、。一个典型的电阻式应变支撑传感器是用一个圆 柱作为弹性元件。圆柱体在轧制力作用下产生形变使得应变片的电阻发生变化,将这些应 变片按一定的方式连接起来,在接入电桥,就可得到一个与轧制力成比例关系的输出电压, 从而将力参数转变成电信号,其原理图如图 2所示。 轧制实验中,将轧机的测力传感器与计算机通过电路以及相应的轧制综合参数测试仪 连接起来,在计算机中,利用杂货之测试软件来采集相关数据。在轧制实验中通过游标卡 尺测量读取相关数据。在拉深实验中,通过读取万能实验机上的的数据并作必要记录。 轧制综合参数测试仪数据采集方法如图 3所示。 3.2拉伸实验原理 金届拉伸实验是测定金届材料力学性能的一个最基
5、本的实验,是了解材料力学性能最 全面,最方便的实验。本实验主要是测定铝板在轴向静载拉伸过程中的力学性能。在试验 过程中,利用实验机的自动绘图装置可绘出铝板的拉伸图。由丁试件在开始受力时,其两 端的夹紧部分在试验机的火头内有一定的滑动,故绘出的拉伸图最初一段是曲线。 对丁碳钢试样,在确定屈服载荷 Ps时,必须注意观察试件屈服时测力度盘上主动针的 转动情况,国际规定主动针停止转动时的包定载荷或第一次回转的最小载荷值为屈服载荷 Ps,故材料的屈服极限为s E/As。 试件拉伸达到最大载荷之前,在标距范围内的变形是均匀的。从最大载荷开始,试件 产生颈缩,截面迅速变细,载荷也随之减小。因此,测力度盘上主
6、动针开始回转,而从动 针则停留在最大载荷的刻度上,指示出最大载荷 Pb,则材料的强度极限为:b Pb/Abo 试件断后,将试件的断口对齐,测量出断裂后的标距li和断口处的直径di ,则材料的延 伸率a和截面收缩率w分别为: 0 100%100% 式中,lo , Ao分别为试验前的标距和横截面面积;li , Ai分别为试验后的标距和断口处的 横截面面积。 4实验参数设定 4.1轧制实验参数的确定 4.1.1试样参数的设定 先利用剪切机剪切得到尺寸为 BXH>L=3 >60 >1000的铝板,再进行横向剪切得到尺寸 为B>H XL=3 >60 X170五块铝板。 4.
7、1.2轧制参数的设定 压下量的确定: 0.15,根据最大的咬入角 0.15,根据最大的咬入角 为 由式(1)可得,maxmax arctan f8.5 由式(1)可得, max max arctan f 8.5,再根据式(2) hmaxD(1 cos max ) 故本实验可取最大压下量 h=0.9mm (D (2) 可得,hmax 1.43mm 变形程度h的确定: 由丁实验所给的铝板厚度大致一样,若要改变变形程度 上述计算可知取最大压下量,实验采用单道次压下,压下量最大 ,只需改变压下量 h o经过 h取用0.9mm,已知转 过17个齿,即压下量为1mm,则当h 0.7 mm需转过12个齿。现
8、在分配每块钢板试样 的压下量,在调整好辗缝的基础上,分别转动齿轮5个齿,8个齿,10个齿,13个齿,15 个齿,即 h 分别为 0.3mm, 0.45mm , 0.6mm, 0.75mm , 0.9mm。 具体理论设计数据如表1所示。 表1铝板冷轧变形程度的确定(理论设计) 试样编号 1 2 3 4 5 轧前厚度 H/mm 3 3 3 3 3 压卜量 h/mm 0.3 0.45 0.6 0.75 0.9 转过齿数/个 5 8 10 13 15 变形程度 /% 10 15 20 25 30 拉伸实验中参数的设定主要是对试样进行尺寸规格设定,如图4所示。 根据体积不变定律可估算冷轧后试样 1的尺寸
9、变为2.7冷0刈88.9 (不考虑宽展的条件下), 因为存在弹性回复及弹性压扁,实际厚度大丁 2.7mm ,实际长度小丁 188.9mm。由丁试样 1的变形程度最小,故其轧制后长度最小。查相关资料可得,试样可按图 1所示形状加工。 l 11.s0 11.Wbh(3) 由经验公式(3)可得在有效宽度b1取30mm时,根据两种不同算法可得到有效长度 l1=101.7mm,取整为102mm。由丁设计时要考虑到试样能被火头夹紧而不至丁脱离,两 端夹住长度分别可取20mm。故有效长度可取l=102mm为,则宽度b 30.0mm,查有关 资料可得,圆弧倒角半径可取15mm,则经过计算试样总长度l可取172
10、mm。 5实验内容 5.1轧制实验 5.1.1实验仪器及材料 实验仪器:130mm实验轧机;压力传感器;综合分析测试仪;游标卡尺。 实验材料:厚度为3mm的钢板一块。 5.1.2实验步骤 将铝板在剪切机上剪成 B L为60X170mm的试样五块。 将五块3>60X170mm规格的铝板试样进行编号,分别为1号,2号,3号,4号, 5号; 将压力传感器安装在轧机上,并将设备间的连线连连接好; 检查好各通路,调节轧制综合参数测试仪至平衡状态,在开扎之前点击数据采 集。 进行辗缝调节,先将辗缝调整为零,缓慢转动转盘,减小辗缝直至计算机采集 图样中曲线出现波动即可停止,说明辗缝已经调整为零。 再将
11、辗缝调整2.20mm,即转过的齿数为37个即可。 开启轧机,按表1调整压下量,先将转盘转过5个齿数,即将辗缝减小0.3mm, 点击采集数据”后,再进行试样1轧制,轧完后测出其轧制后轧件厚度 h,并记录丁表2 中。 在进行试样2、3、4、5的轧制时,在上一个试样的的基础上分别再转动 3,2,3,2 个齿数,相当于总的压下量调整为 0.3mm , 0.45mm , 0.6mm, 0.9mm(理论上),再进行轧 制,分别测量每次轧制后轧件的厚度 h,并记录丁表2中。 轧制完成之后,点击 停止采集”,选择对应的数据点,点击 数据分布”生成word报 表,记录轧制力P、P2、P总、与表2中。 5.2拉伸
12、实验 5.2.1实验仪器及材料 实验仪器:液压万能实验机、游标卡尺、划线机、案子、锯子、锤子、砂纸、圆 理和平理等。 轧制实验后的5块试样。 5.2.2实验步骤 (1)将轧制实验后的5块铝板试样和未加工试样6设计和加工成图4所示形状及尺寸, 备用。 熟悉万能试验机的操作规程,估计拉伸试验所需的最大载荷Fb,并根据Fb值选定 试验机的测力度盘(Fb值在测力度盘40% -80泌围内较宜)。调整测力指针对准零点,并 使从动针与之靠拢,同时调整好自动绘图装置。 将5块试样按原先的15编号进行拉伸实验,测量出拉伸试样的中间长度li和宽 度b分别填入表3中。 将1号铝板试样两端夹紧在火头上,记录拉伸开始时
13、,记录下刻度尺上的示数12 填入表3中。 缓慢加载,每隔一段时间记录下,加载载荷读数以及刻度尺上的读数丁表3,直 至断裂,停止试验,取下断裂后的试样用游标卡尺测出试样端口厚度,记录数据丁表3。 将万能试验机表盘上示数置零。重复步骤(4) (5)分别对试样编号2、3、4、5 进行拉伸,分别记录数据丁表 4、表5、表6、表7、表8中。 6实验结果与分析 6.1轧制实验结果 表2变形程度对轧制力的影响 试样编 号 轧制前 H/mm 轧制后 h/mm 变形程度 /% 轧车昆一端 R/KN 轧辗另一端 p2/kn 总轧制力 P/KN 1 2.94 2.79 5.1 15.85 14.18 30.04 2
14、 2.96 2.66 10.1 24.26 21.13 45.39 3 2.96 2.50 15.5 28.79 24.31 53.10 4 2.96 2.38 19.6 35.51 30.02 65.53 5 2.94 2.30 21.8 40.06 34.59 74.65 2.拉伸实验结果表3试样编号1数据 读 数 次 数 载荷 P/KN 刻度尺 读数 l2 /mm 拉伸前 试样宽 度 b/mm 拉伸 前厚 度 h/mm 截向向 积 S/mm 试样拉 伸断裂 厚度 2 hi/mm 断裂后 试样宽 度 b1/mm 延伸 率/% 拉伸应 力 /Mpa 1 0 0.5 29.98 2.79 79
15、.06 2.70 29.28 0 0 2 0.5 5.0 4.5 6.32 3 1.0 5.5 5.0 12.65 4 2.0 6.0 5.5 25.30 5 3.0 6.5 6.0 37.95 6 4.0 7.8 7.3 50.60 7 4.5 8.0 7.5 56.93 8 5.0 8.5 8.0 6.25 9 4.5 10.3 9.8 56.93 10 4.0 11.0 10.5 50.60 11 3.5 12.0 11.5 44.28 12 2.0 12.5 12.0 25.30 表4试样编号2数据 读 数 次 数 载荷 P/KN 刻度 尺读 数 l2 /m m 拉伸前 试样宽 度 b
16、/mm 拉伸 前厚 度 h/mm 截向向 积 S/mm 试样拉 伸断裂 厚度 2 h"mm 断裂后 试样宽 度 b1/mm 延伸 率/% 拉伸应 力 /Mpa 1 0 0.5 29.96 2.66 73.25 2.50 29.30 0 0 2 0.5 4.0 3.5 6.83 3 1.0 4.5 4.0 1.65 4 1.5 5.0 4.5 20.47 5 2.0 5.5 5.0 27.30 6 2.5 6.0 5.5 34.13 7 5.0 6.5 6.0 68.26 8 5.5 6.8 6.3 75.08 9 6.0 7.0 6.5 81.91 10 6.5 7.5 7.0 88
17、.74 11 6.8 8.5 8.0 92.83 12 6.0 10.0 9.5 81.91 表5试样编号3数据 读 数 次 数 载荷 P/KN 刻度 尺读 数 l2 /m m 拉伸前 试样宽 度 b/mm 拉伸 前厚 度 h/mm 截向向 积 S/mm 试样拉 伸断裂 厚度 .2 h1/mm 断裂后 试样宽 度 b1/mm 延伸 率/% 拉伸应 力 /Mpa 1 0 0.5 29.98 2.50 68.61 2.34 29.32 0 0 2 0.5 3.0 2.5 7.28 3 1.0 3.5 3.0 14.57 4 2.0 4.0 3.5 29.15 5 2.5 4.1 3.6 36.43
18、 6 3.0 4.5 4.0 43.72 7 3.5 4.7 4.2 51.01 8 5.0 5.0 4.5 72.87 9 5.5 5.1 4.6 80.16 10 6.0 5.2 4.7 87.44 11 5.0 7.1 6.6 72.87 12 4.0 7.9 7.4 58.30 表6试样编号4数据 读 数 次 数 载荷 P/KN 刻度 尺读 数 l2 /m m 拉伸前 试样宽 度 b/mm 拉伸 前厚 度 h/mm 截向向 积 S/mm 试样拉 伸断裂 厚度 ,一 , 2 h1/mm 断裂后 试样宽 度 b1/mm 延伸 率/% 拉伸应 力 /Mpa 1 0 0.5 29.94 2.3
19、8 62.70 2.14 29.30 0 0 2 0.5 3.0 2.5 7.98 3 1.0 3.1 2.6 15.95 4 1.5 3.5 3.0 23.92 5 2.0 3.7 3.2 31.90 6 2.5 3.9 3.4 39.88 7 3.0 4.0 3.5 47.85 8 4.0 4.3 3.8 63.80 9 5.0 4.7 4.2 79.75 10 5.5 4.9 4.5 87.73 11 5.6 5.5 5.0 89.32 12 5.0 7.0 6.5 79.75 表7试样编号5数据 读 数 次 数 载荷 P/KN 刻度 尺读 数 l2 /m m 拉伸前 试样宽 度 b/m
20、m 拉伸 前厚 度 h/mm 截向向 积 S/mm 试样拉 伸断裂 厚度 2 h1/mm 断裂后 试样宽 度 b1/mm 延伸 率/% 拉伸应 力 /Mpa 1 0 0.5 29.96 2.30 61.57 2.10 29.32 0 0 2 0.5 3.0 2.5 8.12 3 1.0 3.5 3.0 16.24 4 2.0 3.9 3.4 32.48 5 3.0 4.2 3.7 48.73 6 4.0 4.5 4.0 64.97 7 4.5 4.7 4.2 73.09 8 5.0 4.9 4.5 81.21 9 6.0 5.1 4.6 97.45 10 6.4 5.3 4.8 100.39
21、11 6.0 6.1 5.6 97.45 12 5.0 7.5 7.0 81.21 表8试样编号6数据 读 数 次 数 载荷 P/KN 刻度 尺读 数 l2 /m m 拉伸前 试样宽 度 b/mm 拉伸 前厚 度 h/mm 截向向 积 S/mm 试样拉 伸断裂 厚度 ,一 , 2 h1/mm 断裂后 试样宽 度 b1/mm 延伸 率/% 拉伸应 力 /Mpa 1 0 0.5 29.96 2.96 79.11 2.70 29.30 0 0 2 0.5 3.5 3.0 6.32 3 1.0 3.9 3.5 12.64 4 2.0 4.1 3.6 25.28 5 3.0 4.5 4.0 37.92
22、6 4.0 4.8 4.3 50.56 7 5.0 5.1 4.6 63.20 8 6.0 5.3 4.8 75.84 9 7.0 5.7 5.2 88.48 10 8.0 7.9 7.4 101.12 11 7.5 9.0 8.5 94.80 .12 hw ? I", 10.0 9.5 88.48 7.0 6.2分析与讨论 6.2.1轧制实验 由图5、6可得,轧辗两端的轧制力都是随变形程度的增大而增大的。在图中每个波 峰处取一点,导出所对应的轧制力,两端轧制力之和即为总的轧制力。苗 ri :' R 图5各变形程度下轧制力P1 1: i * :L w 1 1 a 11 :-
23、J 4 以IS :I T;i _1 图6各变形程度下轧制力 P2 对变形程度和总的轧制力进行线性回归分析:如图 7所示 由图7可得,变形程度和总的轧制力关系大致呈非线性关系,变形程度越大,总轧制 力越大。原因:根据本实验方案的要求,每个试样轧制的压下量不断增加,随着压下量的 增大,轧件的接触弧长度增大,轧件的接触面积因此增大;而且,随轧制过程的进行,压 Word文档 下量的增大,试样产生加工硬化,变形抗力随之增加,并且变形程度越大试样加工硬化程 度也越大相应的变形抗力越大。所以轧件的平均单位压力因此增大,从而总轧制力随之增 大。 采用曲线拟合的方法对其进行回归分析。选择分析线性模型 ,二次项模
24、型,三次项模型, 各模型的相关参数见表8。 表9模拟结果数据 、参数 模型 判定系数 2 R 方程系数 常数项 一次项系数 bi 二次项系数 b2 三次项系数 b3 线性模型 0.989 2.970 6.845 二次项模型 0.9995 0.1248 8.3795 -0.5395 三次项模型 0.997 0.598 11.126 -0.901 0.045 自变量为:变形程度 因变量为:总轧制力 由表9可得,三次项的判定系数 R2为0.997,其值相对较靠近1,本设计选用三次项模型 曲线作为变形程度和总的轧制力之间的关系曲线。由图 7可得,随变形程度的增加,总轧 制力呈非线性增加。 上述实验结果
25、具体理论分析:轧制力为轧件给轧辗的总压力的垂直分量。轧制力可用 微分面积上之单位压力 p与该微分体积接触表面之水平投影面积乘积的总和。如取平均值 形式,可采用式(5) P p F(5) 式中:F一轧件与轧辗的接触面积;P 一平均单位压力。 所以,为了确定轧件给轧辗的总压力,必须正确地确定平均单位压力和接触面积。 关丁接触面积的数值,在大多数情况下是比较容易确定的,因为它与轧辗和轧件的几 何尺寸有关,通常可用式(6)确定 F bl(6) 式中:l 一接触弧长度,l v'Rh , h为压下量; b 变形区轧件的平均宽度,一般等丁轧件入辗和出辗处宽度的平均值。 6.2拉伸实验结果 根据表3
26、8中相关数据,通过Excel表格绘制出不同变形程度的拉伸应力-应变曲线图, 如图813图所示。 由丁铝板在拉伸实验中,在初始阶段为弹性变形阶段,故会呈现出线性关系,采用线 性回归。而后面的阶段主要为塑性变形阶段, 主要呈现出非线性关系,分别进行二次拟合、 三次拟合,对比得出三次拟合所得到的曲线判定系数 R2较为接近1,相对误差较小,故采 用三次曲线拟合。而图10中的所得出的交点可大致定为屈服极限,即屈服极限屈服强度 从图10中可得出屈服极限为 oS=36.43MPa,抗拉强度ob=87.44MPa 从图11中可得出屈服极限(s=31.7MPa,抗拉强度(b=89.32MPa ?弹性变形阶段 塑
27、性变形阶段 一疏性I弹性变形口祚为 一多项式笙性囊理阶段) 从图12中可得出屈服极限(s=48.73MPa,抗拉强度ob=100.39MPa 从图13中可得出屈服极限 oS=37.92MPa,抗拉强度ob=101.12MPa。 上述实验结果分析:从应力-应变图中可以看出在弹性变形阶段判定系数 R2并不接近 1,也就是说,在进行拉伸实验时,弹性变形阶段并非呈现理论上的线性相关,造成这种 现象的原因是多方面的,如:拉伸件加工精度不高,在轧制阶段可能由丁送料方式不正确, 或者因轧辗弹跳影响轧件导致变形不均匀。 将各变形程度下屈服极限和抗拉强度列丁表10。 表10各变形程度下延伸率 、屈服极限和抗拉强
28、度 & 变形程度h/% 0 5.1 10.1 15.5 19.6 21.8 延伸率J% 9.5 12 9.5 7.4 6.5 9.5 屈服强度 cs/MPa 37.92 37.95 27.3 36.43 31.9 48.73 抗拉强度 ob/MPa 101.12 63.25 92.83 87.44 89.32 100.39 根据表中数据,将变形程度分别与延伸率、屈服强度、抗拉强度进行回归分析,得出它们 之间的关系曲线。分别选择线性模型,二次项模型,三次项模型进行曲线拟合。 对变形程度和延伸率之间的关系进行线性回归分析: 对变形程度和延伸率之间的关系同理分析可得出:三次项的判定系数R2为
29、0.9809,其值相 对较靠近1,本设计选用三次项模型曲线作为变形程度和延伸率之间的关系曲线,如图 15 所示。200080 所示。 200080即我?n 图15变形程度和抗拉强度之间的关系曲线 变形程度和抗拉强度之间的关系分析可得:三次项的判定系数R2为0.9596,其值相对 较靠近1,本设计选用三次项模型曲线作为变形程度和抗拉强度之间的关系曲线,如图 16 所示。 变形程度和屈服强度之间的关系分析可得: 三次项的判定系数R2为0.6251,结合理论知识 和实际误差,本设计选用三次项模型曲线作为变形程度和屈服强度之间的关系曲线。 Word Word文档 实验中由各组实验数据分析可得:铝板的屈
30、服强度和抗拉强度随着变形程度变化的大 致趋势是先减小后增大,而延伸率随着变形程度的增加大致呈现先增大后减小。 理论上分析:塑性变形改变了金届内部的组织结构, 在晶粒内部出现滑移带和孚生带, 同时晶粒外形发生变化,晶粒的位向也发生改变。如:出现纤维状组织,形成变形织构。 因而改变了金届的力学性能。随着变形程度的增加,金届的强度,硬度增加,塑性和韧性 相应的下降。原因主要是由丁加工硬化的结果。即,是由丁塑性变形引起位错密度增大, 导致位错之间交互作用增强,大量位错形成位错缠结,不动位错等障碍,形成高密度的位 错林,使其余位错运动阻力增大,丁是塑性变形抗力提高,金届塑性降低。 实际实验结果与理论差别的原因:(1)实验设计变形程度相对偏小,导致实验结果不是 很明显。(2)轧制试样在轧制时由丁轧机弹跳值的影响导致变形不均匀。(3)在钳工加工 过程中加工精度不高,是拉伸件表面光滑程度不均,加工过程中使工件表面产生划伤。(4) 数据处理精度不高,每次进行数据测量时应该多次测量取平均值,数据读取时应该有同一 个学生读取,以尽可能的减少测量误差。 7实验小结 本次综合实验的课题变形程度对铝板冷轧变形力和机械性能的影响。通过本次综合实 验的训练让我们进一步掌握材料成型过程中力能参数的检测,变形后金届性能测试的原