《高校AI人才培养的思考(共3778字).doc》由会员分享,可在线阅读,更多相关《高校AI人才培养的思考(共3778字).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高校AI人才培养的思考(共3778字)高校AI人才培养的思考 摘要面对AI技术的快速发展,国家政策的支持及企业对于AI人才的需求,高校作为人才的主要来源,面临着机遇和挑战。文章分析了AI技术人才的类别、高校AI人才培养的优势,从夯实数学基础、人工智能方向课程的建设、实践能力的培养、自主学习能力的培养四个方面阐述了高校关于AI人才培养的一些思考。关键词人工智能;人才培养;AI技术人才一国家对于高校人工智能教育的发展的重视面对AI技术如火如荼地发展,我们国家对AI人才和人才培养都非常重视。2017年3月“人工智能”在政府工作报告中曾提及四次,指出要推动人工智能和实体经济深度融合。2017年7月20
2、日国务院新一代人工智能发展规划4。规划指出完善人工智能领域学科布局,设立人工智能专业,推动人工智能领域一级学科建设,尽快在试点院校建立人工智能学院,增加人工智能相关学科方向的博士、硕士招生名额。鼓励高校在原有基础上拓宽人工智能专业教育内容,形成“人工智能+X”复合专业培养新模式,重视人工智能与数学、计算机科学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合。加强产学研合作,鼓励高校、科研院所与企业等机构合作开展人工智能学科建设。二企业对于人工智能人才的需求市场上AI技术人才非常稀缺,据腾讯研究院联合boss直聘的2017全球人工智能人才白皮书5显示:目前,全球大约有30万人从事A
3、I工作。截止到2017年10月,中国人工智能人才缺口至少在100万以上。2017年头10个月,AI人才需求量是2016年的近两倍,2015年的5.3倍之多,年复合增长率超200%。百度、腾讯、阿里巴巴、京东等互联网巨头都在挖掘AI人才,纷纷开出了高额的薪资。2017年薪资最高的十个职位中AI类岗位占到1/2,其中语音识别、NLP、机器学习等职位平均月薪资超过2.5万元。三高校AI人才培养的思考高校具有多学科、高层次人才集中的特点,具备计算机与多学科交叉融合的优越条件;且大部分学校都开设有数学、物理等基础学科,具备夯实数学理论基础的条件;且人员相对固定,便于沟通交流,具备共同开展AI课题,促进发
4、展AI技术的人力条件。但是遗憾的是我国开设人工智能课程的高校较少,2018年只有33所高校设立了智能科学与技术专业6。面对AI发展的火爆,国家对于AI人才发展的重视以及企业对于AI人才的严重需求,高校作为人才培养的主要来源,是不是应该思考AI人才的培养呢?AI人才可以分为三类:拔尖人才,研究性人才和应用型人才,呈金字塔性。当下已经有一批名牌大学开展了AI方向拔尖人才的培养,如北京大学图灵班、中国科技大学人工智能技术学院、西安交通大学人工智能拔尖人才培养实验班,南京大学计划成立人工智能学院等。但是金字塔的底层、中层更需要庞大的AI技术人才,如应用开发人员、数据工程师、AI和机器学习工程师、AI系
5、统架构师、AI产品经理等岗位的人才,同样值得重视。很多专家都表示AI人才需要数学基础好、专业理论全面、具备一些工程基础,且有自主学习的能力。本文从夯实数学基础、人工智能方向课程的建设、实践能力的培养、自主学习能力的培养四个方面阐述高校关于AI人才培养的一些思考。1奠定扎实的数学基础在学习AI技术时,几乎所有专家学者都提出需要扎实的数学功底,数学功底的厚重程度决定了在AI技术上走多远。高等院校计算机专业都开设有“高等数学”“线性代数”“概率论”等数学课程,但是课时、难易程度不足,学生对于数学不够重视,或者觉得晦涩难懂,学习效果并不十分理想,因此加强数学基础的工作刻不容缓。可以通过必修和选修等方式
6、开设“数据分析”“统计机器学习”“凸优化”等课程;通过微课或者MOOC等方式巩固数学基础的学习;通过优秀科普读物,如数学之美编程之美等书籍的推荐阅读激发学生兴趣;通过开展校内学术讨论、数学竞赛等方式促进学生学习数据的动力,逐步达到夯实数据功底的目的。2人工智能方向课程的建设很多高校计算机专业课程中只开设有人工智能导论,有的甚至没有。智能科学与技术专业开设有“人工智能”“计算机视觉”“机器人学导论”“计算智能”这几门课程,但是在编程、算法等方面不足。那么AI技术人才应具备哪些专业能力呢?如何从专业角度培养AI技术人才呢?2018年1月CSDN了“AI技术人才成长路线图”7,通过专业路径和实战路径
7、两方面介绍了AI技术人才需要具备的知识。需要具备Python、C+、Linux、CUDA编程知识,需要学习机器学习课程、掌握TensorFlow框架。该路线图中列出了机器学习算法工程师、数据科学家等10个岗位AI人才应具备专业知识和能力。微软公司也推出AI人才培养的10门免费课程,如“AI导论”“数据科学会用到的Python语言-导论”“AI领域运用的数学概要”“数据和分析所需要的道德与法律”“数据科学概要”“机器学习法则”“深度学习”“强化学习”“微软专案项目之人工智能”。同时在“文字和自然语言识别”“语音识别”“计算机视觉和图像识别”中选择其一。Google在人工智能学习网站开设有Mach
8、ineLearningCrashCourse(简称MLCC)的免费课程8,由机器学习概念、机器学习工程、机器学习现实世界应用示例三个部分组成。Intel近期也了三门免费的AI课程,分别是“机器学习基础”“深度学习基础”和“TensorFlow基础”9。AndrewNg在Coursera上也推出了机器学习的课程,且用比较通俗的语言讲解机器学习中各个算法。最近在Deeplearn-ing.ai和Coursera平台又开设了5门深度学习课程10。综上所述,不同的研究机构都着眼于AI编程基础、AI算法、AI框架、AI实践这几个方面。那么高校也可以借鉴这些经验,通过三个阶段分层次的开展相应的课程。3实践
9、能力的培养AI技术不能纸上谈兵,必须动手实践才能真正掌握,可以从以下几个方面着手培养学生的实践动手能力。(1)设计教学环节时多从工程应用的角度来介绍,激发学生的兴趣,培养学生解决问题的能力。要求学生新手编程编程实现模型,充分理解算法的含义和原理到实现的过程。(2)在掌握一定的机器学习知识后,鼓励学生尽早走进实验室,接触科研工作。可以从一些AI应用方向作为入手,使学生了解自己的兴趣点、培养科学研究能力。(3)鼓励学生参加算法比赛。目前有很多AI方向的竞赛,如Kaggle上的挑战赛,国内阿里天池大数据竞赛等。通过参加竞赛刺激学生学习AI的动力和热情,使得解决问题的能力和实践动手能力都会大幅度提高。
10、(4)鼓励学生到工业界实习。很多专家都指出AI人才应该具备一定工程基础。确实,学术界往往追求算法的性能,而工业界更重视经济效益和解决问题的有效性。到企业学习可以快速了解行业发展的框架,掌握算法转化到产品的过程。4自主学习能力的培养AI技术发展速度很快,要求不断地学习才能跟上节奏。可以从以下几个方面来培养学生的自主学习能力。(1)平时教学中,可以给出一些小型的项目,让学生自己寻求解决的方案,并把它作为考试成绩的依据之一。(2)提供给学生免费的AI慕课资源,让学生更好的学习和巩固相关知识。(3)课外可以开展学术讨论或者通过社团等方式开展AI方向的研讨,交流,给学生一个学习的平台,让学生尝试选择自己
11、感兴趣的方向。也可以介绍一些近期的AI会议内容,开阔学生的眼界,使其了解AI发展的动态。(4)鼓励高年级学生订阅Arxiv,关注机器学习的顶级会议,如ICML/NIPS等。通过研读论文,动手完成论文中的实验发现新问题;或者扩展感兴趣的论文的实验部分;或者尝试寻求论文中有价值的地方,找到自己的研究方向。四结语高校是人才的主要来源,面对AI人才的短缺,高校对于AI人才培养具有得天独厚的优势。本文从夯实数学基础、人工智能方向课程的建设、实践能力的培养、自主学习能力的培养四个方面阐述了对于高校AI人才培养的一些思考。AI人才不是靠开设几门课程或者短期的培训就可以称之,而是在人工智能领域具备源头创新能力,具备解决企业关机技术难题能力的人才,需要一个长期的培养过程。但是高校可以从基础层次为高质量的AI人才打下扎实的基础,为其今后的发展提供一个更高的平台。第 6 页 共 6 页