试验研究中的优选法简介和讨论.docx

上传人:l*** 文档编号:10000263 上传时间:2022-04-08 格式:DOCX 页数:18 大小:28KB
返回 下载 相关 举报
试验研究中的优选法简介和讨论.docx_第1页
第1页 / 共18页
试验研究中的优选法简介和讨论.docx_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《试验研究中的优选法简介和讨论.docx》由会员分享,可在线阅读,更多相关《试验研究中的优选法简介和讨论.docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、试验研究中的优选法简介和讨论 打开文本图片集 优选法涵盖领域广泛,包括优化试验、优化计算、优化设计、优化限制等,本文侧重优化试验探讨。 将试验探讨对象看作一个总体,依据已有条件和需 求,可以进行机理性、阅历性、统计性探讨。本文着重 于统计性试验探讨。直白地表述:在探讨对象的总体 范围内,选择少量有代表性的试验点样本,对总体的 响应最优值及其规律统计模型作出有效的 推断预报。如何选择试验样本点构成试验方案,就是 优化试验方法的内容。 优化试验方法一般分为两大类:间接分析法和 干脆分析法。间接分析法就是预先设计试验方案,进 行多个样本点试验,用回来分析等数据处理方法,构 造一类函数来靠近这些试验值

2、,再用优化方法计算 函数极值,进行统计分析并通过试验进行验证。干脆 优化法是在初始试验基础上按肯定模式,根 据前面试验点的结果,比较分析推算优化方向和下 一个试验点,而不求出详细的统计模型。该方法是逐 步靠近最优点的方法,又称“循序试验法”、“序贯试 验法”,在最优化理论中颇受重视,可处理没有数值 解析的表达式,也可以求困难函数的最优解。 一般来说,试验室小试,模式由于试验条件处于 专业可控范围内,考察的变量因素范围可适当宽泛, 所以都采纳间接分析法。而对于中试、示范装置、工 程扮装置,一则探讨对象困难,二则为避开恶劣工艺 条件组合产生平安技术风险,可从可用的初始条件 起步,按肯定模式进行小步

3、长序贯寻优试验。 一、单因素优化试验 平分法适用于单调函数。美国Kiefer 于 1953 年提出的黄金分割法及分数法仅适 用于单峰函数。分数法利用菲波那契数列,类同于 0.618 法进行操作。该类方法后一个试验点的支配需依靠前面试验结果的对比,然后依次进行。 在实际试验探讨时,要求对探讨对象的内在规 律函数特性作出先验推断。所以在难以推断对象特性时,大都在试验范围内按等步长支配试验点。 须要强调的是,利用单因素试验考察的试验点 L5 时,用二次多项式、三次多项式 进行拟合,可得近似最优点。 二、拉丁方设计 在生物学试验中,涉及到环境条件中难以严格限制的非变量因素, 如田间试验土壤基础肥力的差

4、异等。为了降低试验 误差,与一般的理化试验不同,在随机、重复的基础 上增加“局部限制”的“区组”,使考察处理的外部环 境更为接近。按这样的概念构成的试验方案中行数、 列数二者相等,该正方形试验方案又用拉丁字母表 示,故称为拉丁方设计,详细应用时可查拉丁方设计 表。表1 所示为考察三个变量因素A、B、C 的33 拉丁方的详细方案。随意两个因素的不同水平各搭 配一次,比较均衡。 试验样本量是行或列水平数的平方,即N=L2, 所以拉丁方设计考察的变量及其水平数不能太多; 拉丁方设计采纳方差分析处理数据,样本量也不能 太少,否则会因误差自由度过小而影响试验结果检 验的灵敏度。 拉丁方区组因素的试验设计

5、是最古老的试验设 计方法,由英国人Fisher R A 于20 世纪30 年头提 出,是由理论探讨驱动的技术创新。拉丁方设计广泛 应用于农业田间试验,并由此开创了试验设计这一 新的领域,具有里程碑式的意义。 三、多因素降维法 实际探讨对象影响目标响应值大都是多个变量因素。在试验方法中,多因素问题带来的困难性是变 量因素间的交互作用和多维空间函数的多峰性。降 维法是将多维问题进行简化的方法,其中坐标 轮换法是应用较广泛的方法。对其他变量先赋 值,降维至一维,进行单因素考察,找到好点,“从好 点动身”依次轮换坐标进行单因素考察。 图1 为探讨对象的等高线图,考察因素A、B 各 包括6 个水平,这在

6、系统探讨前是未知的。进行降维单因素考察时,假定先赋值A3,对B 进行考察,A3B4为好点;固定B4 轮换考察A,结果A3B4 仍为好点,则得出Y=7,完成一轮降维法单因素考察。 若考察变量数为M,其水平数为L,则全面组合 试验次数N=LM,降维法考察一轮试验点的次数N=M*L。但是,供选择的降维方案有n=L种,不同 方案得到的结果是不同的。 该方法简洁明白,符合一般的思维习惯,每个因 素对目标响应值Y 的影响均具有可说明性,因此应 用广泛。但是对于多维困难问题,利用一轮降维单因 素考察法尽管也可得到“好点”,却无法考察变量因 素间的交互作用,易落入局部优化的陷阱。图1 直观地显示了方法的局限性

7、,假如随机地采纳一轮降维单因素考察结果来描述探讨对象是存在技术风险 的。明显,不同的降维方案会 产生不同的结果。目前该方法大都用于研发工作前 期的探究试验,为主体优化试验作技术打算。 四、多因素模式法 模式法就是根据规定的一些模式进行试验,比对计算后寻得优化方向,探究前进。在诸多模式法 中,正规单纯形模式法较有代表性。 单纯形概念由美国数学家丹齐克G B 于1947 年提出,单纯形优化法由Spendly 于1962 年提出。 单纯形是指多维空间的一种凸图形,在几何构图时 所需顶点数最少。二维正规单纯形为正三角形,三维 的为正四面体,即其顶点数是图形的维数加1。高维 的图形无法几何描述,而在笛卡

8、尔直角坐标系中顶 点坐标可用代数方法表述。 图2 为正规单纯形模式方法图解。选定步长a, 以正三角形的三角顶点P0,P1,P2 为起始试验点,比较结果表明P0 为最差点。按“差点的对称点为好点的方向”的原则,求得P3 点,构成P1,P2,P3 组成的新单纯形,以此类推,序贯进行,直到找到满足的结果。 该方法概念清楚,在多维空间坐标中顶点的坐 标值可通过计算公式获得。适合大规模生产装置的 工艺优化,从现有工艺条件P0 动身,限制步长a 不 致于引起工艺条件的过大波动,逐步寻优。模式法中 还包括直角单纯形法、矩形调优法及步长加速法等。 1101811019 年,笔者在化工部兰州化工机械探讨院工作期

9、间,参加广州氮肥厂重油气化攻关工作时,与上海化工探讨院的同仁合作,在气化炉的工艺调优中曾学习、探究过该方法。由于现场限制仪表的精度不够,导致P 点值的波动过大而影响推断结果。 对于多峰函数,该方法仍有可能落入局部优化 的陷阱。 五、多因素随机法 依据优选概率,对多因素考察范围随机选点,形 成样本量为N 的试验方案,对N 个试验结果干脆对 比,达到优选的目的。 图3 为两个变量因素的随机点方案。对变量考察范围,按试验可能的限制精度,等步长地划分网格,再用随机数形成试验方案。依据期望获得的“好点”概率,可以计算出须要的试验点样本量N。 该方法对目标函数没有过多要求,可以是单峰, 也可以是多峰,在多

10、因素时具有相对优势。随机试验 法在文献中被称为蒙特卡洛法,于20 世纪40 年头 由乌拉姆与冯诺依曼提出,可将困难对象的分析问 题转化为统计模拟问题。 由于试验设计的发展,用数论方法找到的伪随 机数比蒙特卡洛法中的随机数更匀称,所以不作进 一步介绍。但在多因素随机法中,随机调优法可用于 目标函数困难、变量因素不限的优化问题,且因素越 多该方法越有优势,应予以关注。 随机数的产生可借助MATLAB 软件中的Rand 函数。在试验探讨统计模型预报功能时,可调用 Rand 函数在考察范围内产生随机化的验证点集。 六、序贯设计法 在试验设计方法中,除了广义的“序贯试验法” 外,另辟特地的序贯设计法。此

11、法的特点是在探讨决 策问题时,不预先固定试验样本 量,而是逐次取样支配试验,直到样本供应足够的信 息,能正确作出决策为止。也就是说试验方案的样本 量是随机的,逐点利用前次获得的信息确定下次的 试验,样本是一个逐次得到的序贯样本。 1947 年,Wald A 的奠基性著作Sequetial analysis出版以来,序贯分析探讨广泛,被认为是对统计 学发展史的重大贡献。 序贯法有两个要素:停止法则与判别法则。停止 法则告知我们在对总体进行逐次抽样试验过程中何 时停止;判别法则依据停止时得到的序贯样本试验 数据,对总体作出推断或选择。 早在19431945 年,Wald A 在序贯分析中提出序贯概

12、率比检验SPRT,为适应美国二次大战中军火生产的质量限制,对经典检验进行了重大改进。经典检验是:某统计量 临界值,拒绝假设;某统计量 临界值,接受假设。改进的基本思想是当统计量不太 大也不太小时,不急于下结论,而再抽样试验一次, 采纳序贯样本的方法,直到统计量足以下结论为止。 推而广之,当同时检验几个统计量,部分统计量不大 不小而不能全部通过时,亦可采纳该方法。计算结果 证明,在相同的犯错误概率 下,相对于固定样本量方案,SPRT 所需平均序贯样本量最小,即效率较高。 对试验探讨可能的竞争性模型进行筛选,是我们感爱好的问题。序 贯设计过程为:依据模型待定参数先在考察范围 内随机进行相应试验点的

13、初始 预试验,求得模型初始参数;用最优化方法求判 别式max 时的下一个试验点; 试验并得到响 应值Y 进行判别,依此进行序贯分析直到满意预定 的精度。 笔者认为可对序贯设计法的选优思路作进一步 引申和改进,将初始预试验的随机点集改为更有效 率的较小样本量的匀称设计,求得模型参数及相应统计量;由于样本量 较小及试验误差等的影响,模型预报精度及统计量 不能满意时,引入SPRT 概念,再行抽样进行下一个 试验,直到满意预定的精 度,作相应的统计推断并进行验证。探究驱动了新方 法的萌芽。从理论上分析,先验地支配固定的较大样 本量时存在试验点富余的可能性。把匀称设计和序 贯分析相耦合的设计方法效率更高

14、,姑且称之为序 贯匀称设计方法,笔者和同仁已在多个项目中胜利 应用。 七、正交试验设计 二次大战后,拉丁方设计基本技术引入日本,以 田口玄一教授为首的探讨人员于1949 年起开发了 各种正交试验设计,1957 年进一步开发了信噪比 S/N 设计和三次设计等,这些设计方法成为质量管 理的重要工具,是当年日本“质量立国”战略的技术基础,也是试验设计领域发展的其次座里程碑。正交 试验设计是由市场驱动的创新。 正交试验设计是利用数理统计学观点,应用正 交性原理,在探讨考察范围内选择肯定样本量的具 有代表性的试验点,构成正交表的一种设计方法。 图4 为M=3,三个因素A,B,C 的水平L=3 的正交试验

15、试验点分布。全面组合试验次数N=LM=27,正交试验次数N=L2=9,均为具有代表性的试验点。 选用L9正交表。在考察范围内试验点布点匀称能获得更多信息,每两个因素之间是L2 的全面组合试验。 注:随意两列间的交互作用为另外两列 正交试验设计具有“均衡分散、整齐可比”的特 点,可以得到优化的ABC 组合条件。表格化的设计 方案、程序化的方差分析、直观化的结果显示,受到 不同专业探讨人员的欢迎。 表2 是L9表的详细方案,A,B,C 分别支配在1,2,3 列。每张正交表都有相对应的两列间交互作用表,供运用时进一步的表头设计。L9表为考察4个变量因素、3 水平的试验设计表,运用该表时存在交互作用和

16、主效应间的混杂现象。 从表3 可见,L9表支配2 个因素,交互作用不混杂,但此时A,B 是全组合试验,没有正交试验的特色;支配3 个因素可节约试验工作量,但交互作用对主效应A,B,C 部分混杂;支配4 个因素可大大节约试验量,但交互作用全面混杂。概括地说,如有先验的阅历推断或者抓主要冲突,则那些交互作用可以忽视。正交试验设计正是忽视了交互作用的考察,才“节约”了试验次数,这是正交设计的不足。 此外,正交设计样本量N=L2 甚至更大,对于变 量考察范围较大,水平数大于5 的多水平场合,试验量较大。而硬性地将水平数压缩为2,3 时,用大步长离散网格来筛选优化点,存在较优条件漏网的风险。 由此可见,

17、正交试验设计比较适用于多因素、小 范围且对因素间交互作用有所了解的探讨对象,尤 其是从现有工艺动身,进行小范围调优及质量限制 探讨具有相对优势。 笔者在兰州化工部化工机械探讨院工作期间, 于11010 年7 月、11018 年8 月以正交试验法为教 材,于11014 年7 月以技术数理统计方法为教材,三次举办培训班主讲并推广正交试验法。正交设计 法还包括正交表并列设计、拟因子设计、 部分追加法、裂区法等。鉴于当前已有更为先进的均 匀设计法,不再进一步绽开。 八、回来正交试验设计 上述正交试验设计通过极差分析、方差分析得 到较优的条件组合,但不能通过统计模型对离散水平之间可能的优化组合作出牢靠的

18、预报和对交互作用进行全面考察。数理统计求取统计模型一般应用最小二乘原理,利用回来分析建立变量和响应的统计方程。回来分析和正交试验设计是相互独立的应用数学分支,但二者耦合构成回来正交试验设计。解决局限、不足驱动了新的方法产生。 回来正交设计在二水平正交试验点基础上,扩充增加星号试验点和零号试验点,构成试验设计方案。试验点分布见图5、图6,变量因素水平需增加为L=5,增加了试验样本量。如前述三因素案例,构筑三元二次回来正交设计的方案试验次数N=15。 由于当年计算机及回来分析软件还不普及,回来正交设计利用正交性、通过编码转换,不须要进行矩阵转置、求逆运算,仅依靠计算器进行表格式的运算即可求得经典的

19、全回来模型,一度受到关注。 笔者认为回来正交试验设计现已失去优势。从试验设计的角度分析,既然探讨对象允许变量水平扩充为多水平,匀称设计的效率更高;从数据处理的角度分析,软件化的逐步回来已取代经典的全回来分析。 由于近年出版的不少教材仍有关于回来正交试验设计的章节,所以本文也单独对其进行探讨,读者仅作科普性了解即可。 九、因子设计 因子设计是一种多因子试验设计方法,经方差分析可以量化各因子及其交互作用对Y响应的效应。该方法主要用于对大量因子进行探讨的初期探究阶段,即进行因子筛选。 在一项新领域的探讨工作中,科研人员的先验阅历不足,须要考察的因素量M 可能许多,但最终可能只有少数因素对响应值Y 有

20、实际影响。利用因子设计法经初期因子筛选后,对保留的因子可以进行更为微小的主体优化设计试验。但是,因子设计事实上是个全组合试验方案,包括2M、3M 因子设计,将探讨因子范围粗定为2 水平、3 水平,2 水平为线性简化。假定考察M=3,因子水平L=3,分别为0,1,2。如图7 所示33 因子设计布点,该设计事实上是N=33=27 的全组合试验。假如 M=5,L=3,则N=35=243,仅仅是初期的筛选试验,就有这样大的试验工作量。所以多因子筛选逻辑上的合理性和试验上的可操作性有很大冲突。 笔者认为因子设计是试验设计技术发展过程中曾经出现过的一种方法,与当前的匀称设计和逐步回来设计技术相比,已无特色

21、、优势,仅作阅读即可。 十、响应曲面法 英国统计学家Box G 和Wilso 于1951 年提出响应曲面法,随着计算机数据处理技术的发展,能给出2 个变量对响应Y 的图形。便于直观判别优化区域的RSM,一度得到了关注。 当多因素试验在初期筛选因子后,只留下为数不多的因子,并搜寻到优化区域,再采纳RSM 进行试验、建模和数据图形处理。一阶响应曲面是作了线性简化,二阶响应曲面为了二次多项式拟合建模须要,对试验方案及试验点作了与回来正交试验设计相类似的技术处理,将变量水平扩展为L=5,见图5、图6。 笔者认为,凡是能统计建模的试验设计,加上图8 所示计算机作图功能,均可达到RSM 的效果。 一阶、二

22、阶响应曲面法,包括1960 年推出的二阶响应曲面的改进Box-Behnken 设计,在当今试验设计中并无系统的优势。 至于建模后图形处理和显示,现有MINITAB 等软件均有较强的功能模块赐予支持。 十一、匀称设计 11018 年王元、方开泰用数论方法开发出了匀称设计。该方法被胜利应用于多因素多水平的导弹设计问题,并获得推广应用。匀称设计被国际数理统计界公认为先进的试验设计方法,是一种稳健设计方法,也是用于大系统计算机仿真试验设计的重要方法之一国外还有“拉丁超立方体抽样”方法。 正交设计的特点:“均衡分散”使试验点具有代表性;“整齐可比”使试验数据可以直观进行比对分析。为了保证“整齐可比”,正

23、交设计的两个因素间必需全面进行组合试验,即最低试验次数N=L2。而匀称设计在试验考察范围内只考虑匀称分布,数据处理依靠回来分析,所以试验点可进一步降低,每个水平只做一次试验,样本N=L,试验设计方案效率更高;回来分析也有助于对变量间的交互作用作深化考察。 对匀称设计的样本量,数据处理系统建议N=3M,笔者举荐N=M,可依据探讨对象的困难程度及试验误差的限制水平选用匀称设计表。 表4所示为U7*表及其配套的运用表。 若以本文在不同试验设计中列举的因素M=3、 水平L=5 为例,进行设计方案分析,则全面组合试验次数N=LM=53=125;降维单因素考察一轮试验次数N=LM=53=15,忽视交互作用

24、,陷入局部优化; 正交设计试验次数N=L2=52=25,选用L25正交表,忽视交互作用,效应混杂;正交回来设计试验次数N=15,选用三元二次回来正交设计;匀称设计试验次数N=7,选用U7*。匀称设计在多因素多水平探讨问题中,显示出突出的优势。 20 世纪80 年头,导弹设计中有个项目是5 个 变量,试验水平数不少于10,而试验 总次数又不能超过50。这是一个多因素多 水平的探讨对象,由于无法采纳正交设计及其他试 验设计方法,探讨工作面临逆境。 王元、方开泰于11018 年受当时的第七机械工业部托付,用数论方法开发出了新的匀称设计,试验量N=31,取得了胜利。这是由需求驱动的创新。 20 世纪9

25、0 年头中后期,笔者曾支持院科研处 外请专家来院讲授匀称设计,教材是方开泰著的均 匀设计与匀称设计表,该书我保留至今,时常翻阅。 多年来也努力应用并推广匀称设计。30 多年来,均 匀设计从军工系统向民用系统扩散、转移,得到快速 发展和应用。匀称设计方法受到普遍关注。随着试验 设计和数据处理技术的发展,匀称设计还包含有定 性因素的匀称设计、混料匀称设计、匀称序贯设计, 以及匀称设计和其他数值计算技术的耦合优化,如 UD+Fluet、UD+ASPEN 等。匀称设计作为当代优化试验设计的主流技术,值得学习、应用、推广。 十二、混料设计 在科学探讨、工农业生产中,混料配方问题是广泛涉及的探讨对象。混料

26、试验中重量组分至少有三种,每个组分i的质量分数总和等于1,即 试验响应值Y 仅与xi的占比有关,而与其总量无关。由于i=1 约束条件的存在,和以往试验不同,变量因素组分xi是不独立的,所以试验探讨的设计方法、数据处理技术均有根本性的差异,因此试验设计就包括特地的混料设计。 在混料设计中,要以单形坐标系而不是笛卡尔 直角坐标系来进行描述。单形是指顶点数与坐标空 间维数相等的凸图形,一般采纳正单形,如正三角形、正四面体等。P 维单形即P=1 单纯形,P=3 即高 为101%的平面正三角形,构成三线坐标图。正 三角形内随意一点R都有三个组成 的含量坐标,且x1+x2+x3=1,如图9、图10 所示。

27、P=4为正四面体,P5 时无直观图形,用数学描述。 Scheffe 于1958 年在正单形坐标体系基础上提 出单纯形格子点法,1963 年提出单纯形质心法。 Cormell 提出了轴设计法,并在11010 年对经典的混料设计作了综合介绍。MINITAB 软件有相应模块支持单纯形质心法、单纯形格点法、极端顶点设计法,只要输入试验条件计算机即可生成混料设计方案。 图11 为利用极端顶点设计法分析某个阻燃剂 案例的试验点分布。 在经典混料设计法应用过程中,发觉了新的问 第18页 共18页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁